{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "ZG_P29nKcSeI"
   },
   "source": [
    "# HuggingFace challenge - Debugger notebook\n",
    "Run this notebook to verify your libraries versions, check GPU config and run a quick training"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "id": "YacvHugMc1Ka"
   },
   "outputs": [],
   "source": [
    "# %%capture\n",
    "# !pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode\n",
    "# !pip install datasets==1.18.1\n",
    "# !pip install git+https://github.com/huggingface/transformers.git\n",
    "# !pip install huggingface_hub==0.1\n",
    "# !pip install torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html\n",
    "# !pip install jiwer\n",
    "# !pip install -U git+https://github.com/huggingface/transformers.git"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "vy63SoiZbnB5",
    "outputId": "17391c60-b894-4571-b8a4-d46b18cb42e2"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting git+https://github.com/huggingface/transformers.git\n",
      "  Cloning https://github.com/huggingface/transformers.git to /tmp/pip-req-build-i45amciw\n",
      "  Running command git clone -q https://github.com/huggingface/transformers.git /tmp/pip-req-build-i45amciw\n",
      "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
      "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
      "    Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n",
      "Requirement already satisfied: huggingface-hub<1.0,>=0.1.0 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (0.1.0)\n",
      "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (3.4.2)\n",
      "Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (4.10.1)\n",
      "Requirement already satisfied: tokenizers!=0.11.3,>=0.10.1 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (0.11.4)\n",
      "Requirement already satisfied: sacremoses in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (0.0.47)\n",
      "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (1.19.5)\n",
      "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (4.62.3)\n",
      "Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (2.23.0)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (6.0)\n",
      "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (21.3)\n",
      "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (2019.12.20)\n",
      "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers==4.17.0.dev0) (3.10.0.2)\n",
      "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers==4.17.0.dev0) (3.0.7)\n",
      "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers==4.17.0.dev0) (3.7.0)\n",
      "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.17.0.dev0) (2.10)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.17.0.dev0) (2021.10.8)\n",
      "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.17.0.dev0) (3.0.4)\n",
      "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.17.0.dev0) (1.24.3)\n",
      "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.17.0.dev0) (1.15.0)\n",
      "Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.17.0.dev0) (1.1.0)\n",
      "Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.17.0.dev0) (7.1.2)\n"
     ]
    }
   ],
   "source": [
    "# !pip install -U git+https://github.com/huggingface/transformers.git"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "id": "T2utsYSKszvv"
   },
   "outputs": [],
   "source": [
    "import platform\n",
    "import multiprocessing\n",
    "\n",
    "import torch\n",
    "import transformers\n",
    "import datasets\n",
    "\n",
    "import soundfile"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "ejKNEyJEcSeO"
   },
   "source": [
    "## Print main infos"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "5P6I-W9ts-kR",
    "outputId": "bd0c00d8-91c9-4b1a-8f2c-24182c2b227f"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform: Linux-5.11.0-37-generic-x86_64-with-glibc2.10\n",
      "CPU cores: 60\n",
      "Python version: 3.8.8\n",
      "PyTorch version: 1.10.1+cu102\n",
      "GPU is visible: True\n",
      "Transformers version: 4.16.0.dev0\n",
      "Datasets version: 1.17.1.dev0\n",
      "soundfile version: 0.10.3\n"
     ]
    }
   ],
   "source": [
    "print(f\"Platform: {platform.platform()}\")\n",
    "print(f\"CPU cores: {multiprocessing.cpu_count()}\")\n",
    "\n",
    "print(f\"Python version: {platform.python_version()}\")\n",
    "\n",
    "print(f\"PyTorch version: {torch.__version__}\")\n",
    "print(f\"GPU is visible: {torch.cuda.is_available()}\")\n",
    "\n",
    "print(f\"Transformers version: {transformers.__version__}\")\n",
    "print(f\"Datasets version: {datasets.__version__}\")\n",
    "\n",
    "print(f\"soundfile version: {soundfile.__version__}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "_VUKw21PcSeQ"
   },
   "source": [
    "## Check your GPU informations (if any)\n",
    "If you launched an AI Training job with GPU resources, they should be listed below (Tesla V100s 32GB).\n",
    "Driver and CUDA version "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "YT7fRnKctggU",
    "outputId": "1fb2c851-11c3-4fcd-ad23-9032f25d7f8d"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sat Jan 29 03:27:00 2022       \n",
      "+-----------------------------------------------------------------------------+\n",
      "| NVIDIA-SMI 470.57.02    Driver Version: 470.57.02    CUDA Version: 11.4     |\n",
      "|-------------------------------+----------------------+----------------------+\n",
      "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\n",
      "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n",
      "|                               |                      |               MIG M. |\n",
      "|===============================+======================+======================|\n",
      "|   0  Tesla V100S-PCI...  Off  | 00000000:00:06.0 Off |                    0 |\n",
      "| N/A   35C    P0    26W / 250W |      4MiB / 32510MiB |      0%      Default |\n",
      "|                               |                      |                  N/A |\n",
      "+-------------------------------+----------------------+----------------------+\n",
      "                                                                               \n",
      "+-----------------------------------------------------------------------------+\n",
      "| Processes:                                                                  |\n",
      "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\n",
      "|        ID   ID                                                   Usage      |\n",
      "|=============================================================================|\n",
      "|  No running processes found                                                 |\n",
      "+-----------------------------------------------------------------------------+\n"
     ]
    }
   ],
   "source": [
    "!nvidia-smi"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 241,
     "referenced_widgets": [
      "50a1252082d942b09bfc620a9fa9d1d0",
      "e270b7c82f784ebbbba4b17fb07c310d",
      "32eb83bb6fd34c56bb345368e47e8f6f",
      "34417f648cd54ed5b6d91f53af3e2713",
      "7518572223ac480b89af2ab71f38b2ed",
      "ce8bb7d0fb744e7b9ce2ff35cfdbc679",
      "aa47a09bf444413ba95322d979c1908c",
      "0b83a8775ea1441980d8ba945be752fe",
      "127389ec566e423ab9a8f60a9d61caaa",
      "4e4bc5550505497ba35f6bd7dde2893f",
      "e5124c5171e04625b70795e4b7a18819",
      "e410e7aecf23433f880a0f7169a8ce97",
      "0f6b3cf1d33f46f594934874170bcd83",
      "e549178ba75f4939aba6ae1cf743722a",
      "9c28978adf974326a21259ae56f47fe9",
      "7d3231a0b7794b11af662170b352d9e0"
     ]
    },
    "id": "3Wj2W4tWcSeR",
    "outputId": "ad4eb63f-d643-45bd-b8d7-6adfefd9f773"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Login successful\n",
      "Your token has been saved to /root/.huggingface/token\n",
      "\u001b[1m\u001b[31mAuthenticated through git-crendential store but this isn't the helper defined on your machine.\n",
      "You will have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal to set it as the default\n",
      "\n",
      "git config --global credential.helper store\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "id": "wHpUxFQPeWE2"
   },
   "outputs": [],
   "source": [
    "%%capture\n",
    "!apt install git-lfs"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "TorMtpwPv6RQ"
   },
   "source": [
    "## Quick training run with a dummy model and data\n",
    "more information on https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "fevoJD15u4Ss",
    "outputId": "64745ecf-65b0-494d-a88d-52826eaae0f8"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2022-01-28 09:12:30--  https://raw.githubusercontent.com/huggingface/transformers/master/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.111.133, 185.199.109.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 31209 (30K) [text/plain]\n",
      "Saving to: ‘run_speech_recognition_ctc.py’\n",
      "\n",
      "run_speech_recognit 100%[===================>]  30.48K  --.-KB/s    in 0.001s  \n",
      "\n",
      "2022-01-28 09:12:30 (21.4 MB/s) - ‘run_speech_recognition_ctc.py’ saved [31209/31209]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "!wget -O run_speech_recognition_ctc.py https://raw.githubusercontent.com/huggingface/transformers/master/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py\n",
    "# !wget -O run_speech_recognition_ctc.py https://raw.githubusercontent.com/huggingface/transformers/master/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "id": "XJRA51HjcSeT"
   },
   "outputs": [],
   "source": [
    "# \t--learning_rate=\"7.5e-5\" \\\n",
    "# 84.5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "hZOB6ZAnsvDX",
    "outputId": "7b6a85b5-950c-46a1-c005-b885f8a9bd17"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "nvcc: NVIDIA (R) Cuda compiler driver\n",
      "Copyright (c) 2005-2020 NVIDIA Corporation\n",
      "Built on Mon_Oct_12_20:09:46_PDT_2020\n",
      "Cuda compilation tools, release 11.1, V11.1.105\n",
      "Build cuda_11.1.TC455_06.29190527_0\n"
     ]
    }
   ],
   "source": [
    "!nvcc --version"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "NKlgW0E-sldT",
    "outputId": "b925521a-29d2-4787-dd5b-6520dda688e4"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting bitsandbytes-cuda111\n",
      "  Downloading bitsandbytes_cuda111-0.26.0-py3-none-any.whl (4.0 MB)\n",
      "\u001b[K     |████████████████████████████████| 4.0 MB 4.3 MB/s \n",
      "\u001b[?25hInstalling collected packages: bitsandbytes-cuda111\n",
      "Successfully installed bitsandbytes-cuda111-0.26.0\n"
     ]
    }
   ],
   "source": [
    "!pip install bitsandbytes-cuda111"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "remove special characters from datasets: 100%|█| 1010/1010 [00:00<00:00, 2695.96\n",
      "remove special characters from datasets: 100%|█| 421/421 [00:00<00:00, 7265.84ex\n",
      "loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
      "Model config Wav2Vec2Config {\n",
      "  \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
      "  \"activation_dropout\": 0.0,\n",
      "  \"adapter_kernel_size\": 3,\n",
      "  \"adapter_stride\": 2,\n",
      "  \"add_adapter\": false,\n",
      "  \"apply_spec_augment\": true,\n",
      "  \"architectures\": [\n",
      "    \"Wav2Vec2ForPreTraining\"\n",
      "  ],\n",
      "  \"attention_dropout\": 0.1,\n",
      "  \"bos_token_id\": 1,\n",
      "  \"classifier_proj_size\": 256,\n",
      "  \"codevector_dim\": 768,\n",
      "  \"contrastive_logits_temperature\": 0.1,\n",
      "  \"conv_bias\": true,\n",
      "  \"conv_dim\": [\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512\n",
      "  ],\n",
      "  \"conv_kernel\": [\n",
      "    10,\n",
      "    3,\n",
      "    3,\n",
      "    3,\n",
      "    3,\n",
      "    2,\n",
      "    2\n",
      "  ],\n",
      "  \"conv_stride\": [\n",
      "    5,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2\n",
      "  ],\n",
      "  \"ctc_loss_reduction\": \"sum\",\n",
      "  \"ctc_zero_infinity\": false,\n",
      "  \"diversity_loss_weight\": 0.1,\n",
      "  \"do_stable_layer_norm\": true,\n",
      "  \"eos_token_id\": 2,\n",
      "  \"feat_extract_activation\": \"gelu\",\n",
      "  \"feat_extract_dropout\": 0.0,\n",
      "  \"feat_extract_norm\": \"layer\",\n",
      "  \"feat_proj_dropout\": 0.1,\n",
      "  \"feat_quantizer_dropout\": 0.0,\n",
      "  \"final_dropout\": 0.0,\n",
      "  \"gradient_checkpointing\": false,\n",
      "  \"hidden_act\": \"gelu\",\n",
      "  \"hidden_dropout\": 0.1,\n",
      "  \"hidden_size\": 1024,\n",
      "  \"initializer_range\": 0.02,\n",
      "  \"intermediate_size\": 4096,\n",
      "  \"layer_norm_eps\": 1e-05,\n",
      "  \"layerdrop\": 0.1,\n",
      "  \"mask_feature_length\": 10,\n",
      "  \"mask_feature_min_masks\": 0,\n",
      "  \"mask_feature_prob\": 0.0,\n",
      "  \"mask_time_length\": 10,\n",
      "  \"mask_time_min_masks\": 2,\n",
      "  \"mask_time_prob\": 0.075,\n",
      "  \"model_type\": \"wav2vec2\",\n",
      "  \"num_adapter_layers\": 3,\n",
      "  \"num_attention_heads\": 16,\n",
      "  \"num_codevector_groups\": 2,\n",
      "  \"num_codevectors_per_group\": 320,\n",
      "  \"num_conv_pos_embedding_groups\": 16,\n",
      "  \"num_conv_pos_embeddings\": 128,\n",
      "  \"num_feat_extract_layers\": 7,\n",
      "  \"num_hidden_layers\": 24,\n",
      "  \"num_negatives\": 100,\n",
      "  \"output_hidden_size\": 1024,\n",
      "  \"pad_token_id\": 0,\n",
      "  \"proj_codevector_dim\": 768,\n",
      "  \"tdnn_dilation\": [\n",
      "    1,\n",
      "    2,\n",
      "    3,\n",
      "    1,\n",
      "    1\n",
      "  ],\n",
      "  \"tdnn_dim\": [\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    1500\n",
      "  ],\n",
      "  \"tdnn_kernel\": [\n",
      "    5,\n",
      "    3,\n",
      "    3,\n",
      "    1,\n",
      "    1\n",
      "  ],\n",
      "  \"torch_dtype\": \"float32\",\n",
      "  \"transformers_version\": \"4.16.0.dev0\",\n",
      "  \"use_weighted_layer_sum\": false,\n",
      "  \"vocab_size\": 32,\n",
      "  \"xvector_output_dim\": 512\n",
      "}\n",
      "\n",
      "100%|█████████████████████████████████████████████| 1/1 [00:00<00:00, 17.05ba/s]\n",
      "100%|█████████████████████████████████████████████| 1/1 [00:00<00:00, 59.29ba/s]\n",
      "Didn't find file ./wav2vec2-large-xls-r-300m-romansh-vallader/tokenizer_config.json. We won't load it.\n",
      "Didn't find file ./wav2vec2-large-xls-r-300m-romansh-vallader/added_tokens.json. We won't load it.\n",
      "Didn't find file ./wav2vec2-large-xls-r-300m-romansh-vallader/special_tokens_map.json. We won't load it.\n",
      "Didn't find file ./wav2vec2-large-xls-r-300m-romansh-vallader/tokenizer.json. We won't load it.\n",
      "loading file ./wav2vec2-large-xls-r-300m-romansh-vallader/vocab.json\n",
      "loading file None\n",
      "loading file None\n",
      "loading file None\n",
      "loading file None\n",
      "file ./wav2vec2-large-xls-r-300m-romansh-vallader/config.json not found\n",
      "Adding <s> to the vocabulary\n",
      "Adding </s> to the vocabulary\n",
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
      "loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
      "Model config Wav2Vec2Config {\n",
      "  \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
      "  \"activation_dropout\": 0.0,\n",
      "  \"adapter_kernel_size\": 3,\n",
      "  \"adapter_stride\": 2,\n",
      "  \"add_adapter\": false,\n",
      "  \"apply_spec_augment\": true,\n",
      "  \"architectures\": [\n",
      "    \"Wav2Vec2ForPreTraining\"\n",
      "  ],\n",
      "  \"attention_dropout\": 0.1,\n",
      "  \"bos_token_id\": 1,\n",
      "  \"classifier_proj_size\": 256,\n",
      "  \"codevector_dim\": 768,\n",
      "  \"contrastive_logits_temperature\": 0.1,\n",
      "  \"conv_bias\": true,\n",
      "  \"conv_dim\": [\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512\n",
      "  ],\n",
      "  \"conv_kernel\": [\n",
      "    10,\n",
      "    3,\n",
      "    3,\n",
      "    3,\n",
      "    3,\n",
      "    2,\n",
      "    2\n",
      "  ],\n",
      "  \"conv_stride\": [\n",
      "    5,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2\n",
      "  ],\n",
      "  \"ctc_loss_reduction\": \"sum\",\n",
      "  \"ctc_zero_infinity\": false,\n",
      "  \"diversity_loss_weight\": 0.1,\n",
      "  \"do_stable_layer_norm\": true,\n",
      "  \"eos_token_id\": 2,\n",
      "  \"feat_extract_activation\": \"gelu\",\n",
      "  \"feat_extract_dropout\": 0.0,\n",
      "  \"feat_extract_norm\": \"layer\",\n",
      "  \"feat_proj_dropout\": 0.1,\n",
      "  \"feat_quantizer_dropout\": 0.0,\n",
      "  \"final_dropout\": 0.0,\n",
      "  \"gradient_checkpointing\": false,\n",
      "  \"hidden_act\": \"gelu\",\n",
      "  \"hidden_dropout\": 0.1,\n",
      "  \"hidden_size\": 1024,\n",
      "  \"initializer_range\": 0.02,\n",
      "  \"intermediate_size\": 4096,\n",
      "  \"layer_norm_eps\": 1e-05,\n",
      "  \"layerdrop\": 0.1,\n",
      "  \"mask_feature_length\": 10,\n",
      "  \"mask_feature_min_masks\": 0,\n",
      "  \"mask_feature_prob\": 0.0,\n",
      "  \"mask_time_length\": 10,\n",
      "  \"mask_time_min_masks\": 2,\n",
      "  \"mask_time_prob\": 0.075,\n",
      "  \"model_type\": \"wav2vec2\",\n",
      "  \"num_adapter_layers\": 3,\n",
      "  \"num_attention_heads\": 16,\n",
      "  \"num_codevector_groups\": 2,\n",
      "  \"num_codevectors_per_group\": 320,\n",
      "  \"num_conv_pos_embedding_groups\": 16,\n",
      "  \"num_conv_pos_embeddings\": 128,\n",
      "  \"num_feat_extract_layers\": 7,\n",
      "  \"num_hidden_layers\": 24,\n",
      "  \"num_negatives\": 100,\n",
      "  \"output_hidden_size\": 1024,\n",
      "  \"pad_token_id\": 0,\n",
      "  \"proj_codevector_dim\": 768,\n",
      "  \"tdnn_dilation\": [\n",
      "    1,\n",
      "    2,\n",
      "    3,\n",
      "    1,\n",
      "    1\n",
      "  ],\n",
      "  \"tdnn_dim\": [\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    1500\n",
      "  ],\n",
      "  \"tdnn_kernel\": [\n",
      "    5,\n",
      "    3,\n",
      "    3,\n",
      "    1,\n",
      "    1\n",
      "  ],\n",
      "  \"torch_dtype\": \"float32\",\n",
      "  \"transformers_version\": \"4.16.0.dev0\",\n",
      "  \"use_weighted_layer_sum\": false,\n",
      "  \"vocab_size\": 32,\n",
      "  \"xvector_output_dim\": 512\n",
      "}\n",
      "\n",
      "loading feature extractor configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/preprocessor_config.json from cache at /workspace/.cache/huggingface/transformers/6fb028b95b394059e7d3b367bbca2382b576c66aebe896f04d2cd34e1b575f5b.d4484dc1c81456a2461485e7168b04347a7b9a4e3b1ef3aba723323b33e12326\n",
      "Feature extractor Wav2Vec2FeatureExtractor {\n",
      "  \"do_normalize\": true,\n",
      "  \"feature_extractor_type\": \"Wav2Vec2FeatureExtractor\",\n",
      "  \"feature_size\": 1,\n",
      "  \"padding_side\": \"right\",\n",
      "  \"padding_value\": 0,\n",
      "  \"return_attention_mask\": true,\n",
      "  \"sampling_rate\": 16000\n",
      "}\n",
      "\n",
      "loading weights file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/pytorch_model.bin from cache at /workspace/.cache/huggingface/transformers/1e6a6507f3b689035cd4b247e2a37c154e27f39143f31357a49b4e38baeccc36.1edb32803799e27ed554eb7dd935f6745b1a0b17b0ea256442fe24db6eb546cd\n",
      "Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_hid.bias', 'quantizer.codevectors', 'project_q.weight', 'project_q.bias', 'quantizer.weight_proj.weight', 'project_hid.weight', 'quantizer.weight_proj.bias']\n",
      "- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
      "Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.weight', 'lm_head.bias']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
      "preprocess datasets: 100%|██████████████████| 1010/1010 [00:12<00:00, 78.52ex/s]\n",
      "preprocess datasets: 100%|████████████████████| 421/421 [00:04<00:00, 91.31ex/s]\n",
      "100%|████████████████████████████████████████████| 2/2 [00:00<00:00, 980.21ba/s]\n",
      "100%|████████████████████████████████████████████| 1/1 [00:00<00:00, 866.41ba/s]\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      "tokenizer config file saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/tokenizer_config.json\n",
      "Special tokens file saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/special_tokens_map.json\n",
      "added tokens file saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/added_tokens.json\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/config.json\n",
      "loading feature extractor configuration file ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      "loading configuration file ./wav2vec2-large-xls-r-300m-romansh-vallader/config.json\n",
      "Model config Wav2Vec2Config {\n",
      "  \"_name_or_path\": \"./wav2vec2-large-xls-r-300m-romansh-vallader\",\n",
      "  \"activation_dropout\": 0.1,\n",
      "  \"adapter_kernel_size\": 3,\n",
      "  \"adapter_stride\": 2,\n",
      "  \"add_adapter\": false,\n",
      "  \"apply_spec_augment\": true,\n",
      "  \"architectures\": [\n",
      "    \"Wav2Vec2ForPreTraining\"\n",
      "  ],\n",
      "  \"attention_dropout\": 0.0,\n",
      "  \"bos_token_id\": 1,\n",
      "  \"classifier_proj_size\": 256,\n",
      "  \"codevector_dim\": 768,\n",
      "  \"contrastive_logits_temperature\": 0.1,\n",
      "  \"conv_bias\": true,\n",
      "  \"conv_dim\": [\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512\n",
      "  ],\n",
      "  \"conv_kernel\": [\n",
      "    10,\n",
      "    3,\n",
      "    3,\n",
      "    3,\n",
      "    3,\n",
      "    2,\n",
      "    2\n",
      "  ],\n",
      "  \"conv_stride\": [\n",
      "    5,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2,\n",
      "    2\n",
      "  ],\n",
      "  \"ctc_loss_reduction\": \"mean\",\n",
      "  \"ctc_zero_infinity\": false,\n",
      "  \"diversity_loss_weight\": 0.1,\n",
      "  \"do_stable_layer_norm\": true,\n",
      "  \"eos_token_id\": 2,\n",
      "  \"feat_extract_activation\": \"gelu\",\n",
      "  \"feat_extract_dropout\": 0.0,\n",
      "  \"feat_extract_norm\": \"layer\",\n",
      "  \"feat_proj_dropout\": 0.0,\n",
      "  \"feat_quantizer_dropout\": 0.0,\n",
      "  \"final_dropout\": 0.0,\n",
      "  \"hidden_act\": \"gelu\",\n",
      "  \"hidden_dropout\": 0.0,\n",
      "  \"hidden_size\": 1024,\n",
      "  \"initializer_range\": 0.02,\n",
      "  \"intermediate_size\": 4096,\n",
      "  \"layer_norm_eps\": 1e-05,\n",
      "  \"layerdrop\": 0.0,\n",
      "  \"mask_feature_length\": 64,\n",
      "  \"mask_feature_min_masks\": 0,\n",
      "  \"mask_feature_prob\": 0.25,\n",
      "  \"mask_time_length\": 10,\n",
      "  \"mask_time_min_masks\": 2,\n",
      "  \"mask_time_prob\": 0.75,\n",
      "  \"model_type\": \"wav2vec2\",\n",
      "  \"num_adapter_layers\": 3,\n",
      "  \"num_attention_heads\": 16,\n",
      "  \"num_codevector_groups\": 2,\n",
      "  \"num_codevectors_per_group\": 320,\n",
      "  \"num_conv_pos_embedding_groups\": 16,\n",
      "  \"num_conv_pos_embeddings\": 128,\n",
      "  \"num_feat_extract_layers\": 7,\n",
      "  \"num_hidden_layers\": 24,\n",
      "  \"num_negatives\": 100,\n",
      "  \"output_hidden_size\": 1024,\n",
      "  \"pad_token_id\": 43,\n",
      "  \"proj_codevector_dim\": 768,\n",
      "  \"tdnn_dilation\": [\n",
      "    1,\n",
      "    2,\n",
      "    3,\n",
      "    1,\n",
      "    1\n",
      "  ],\n",
      "  \"tdnn_dim\": [\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    512,\n",
      "    1500\n",
      "  ],\n",
      "  \"tdnn_kernel\": [\n",
      "    5,\n",
      "    3,\n",
      "    3,\n",
      "    1,\n",
      "    1\n",
      "  ],\n",
      "  \"torch_dtype\": \"float32\",\n",
      "  \"transformers_version\": \"4.16.0.dev0\",\n",
      "  \"use_weighted_layer_sum\": false,\n",
      "  \"vocab_size\": 46,\n",
      "  \"xvector_output_dim\": 512\n",
      "}\n",
      "\n",
      "loading feature extractor configuration file ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      "Feature extractor Wav2Vec2FeatureExtractor {\n",
      "  \"do_normalize\": true,\n",
      "  \"feature_extractor_type\": \"Wav2Vec2FeatureExtractor\",\n",
      "  \"feature_size\": 1,\n",
      "  \"padding_side\": \"right\",\n",
      "  \"padding_value\": 0,\n",
      "  \"return_attention_mask\": true,\n",
      "  \"sampling_rate\": 16000\n",
      "}\n",
      "\n",
      "Didn't find file ./wav2vec2-large-xls-r-300m-romansh-vallader/tokenizer.json. We won't load it.\n",
      "loading file ./wav2vec2-large-xls-r-300m-romansh-vallader/vocab.json\n",
      "loading file ./wav2vec2-large-xls-r-300m-romansh-vallader/tokenizer_config.json\n",
      "loading file ./wav2vec2-large-xls-r-300m-romansh-vallader/added_tokens.json\n",
      "loading file ./wav2vec2-large-xls-r-300m-romansh-vallader/special_tokens_map.json\n",
      "loading file None\n",
      "Adding <s> to the vocabulary\n",
      "Adding </s> to the vocabulary\n",
      "Cloning https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-romansh-vallader into local empty directory.\n",
      "Using amp half precision backend\n",
      "The following columns in the training set  don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
      "/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
      "  warnings.warn(\n",
      "***** Running training *****\n",
      "  Num examples = 1010\n",
      "  Num Epochs = 100\n",
      "  Instantaneous batch size per device = 32\n",
      "  Total train batch size (w. parallel, distributed & accumulation) = 32\n",
      "  Gradient Accumulation steps = 1\n",
      "  Total optimization steps = 3200\n",
      " 16%|█████▉                                | 500/3200 [18:48<1:31:12,  2.03s/it]The following columns in the evaluation set  don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
      "***** Running Evaluation *****\n",
      "  Num examples = 421\n",
      "  Batch size = 1\n",
      "\n",
      "  0%|                                                   | 0/421 [00:00<?, ?it/s]\u001b[A\n",
      "  1%|▎                                          | 3/421 [00:00<00:17, 23.24it/s]\u001b[A\n",
      "  1%|▌                                          | 6/421 [00:00<00:23, 18.01it/s]\u001b[A\n",
      "  2%|▊                                          | 8/421 [00:00<00:25, 16.18it/s]\u001b[A\n",
      "  2%|▉                                         | 10/421 [00:00<00:25, 16.34it/s]\u001b[A\n",
      "  3%|█▏                                        | 12/421 [00:00<00:24, 16.68it/s]\u001b[A\n",
      "  3%|█▍                                        | 14/421 [00:00<00:24, 16.70it/s]\u001b[A\n",
      "  4%|█▌                                        | 16/421 [00:00<00:24, 16.78it/s]\u001b[A\n",
      "  5%|█▉                                        | 19/421 [00:01<00:22, 17.77it/s]\u001b[A\n",
      "  5%|██▏                                       | 22/421 [00:01<00:21, 18.35it/s]\u001b[A\n",
      "  6%|██▍                                       | 24/421 [00:01<00:21, 18.13it/s]\u001b[A\n",
      "  6%|██▌                                       | 26/421 [00:01<00:21, 18.49it/s]\u001b[A\n",
      "  7%|██▊                                       | 28/421 [00:01<00:20, 18.80it/s]\u001b[A\n",
      "  7%|██▉                                       | 30/421 [00:01<00:21, 18.32it/s]\u001b[A\n",
      "  8%|███▏                                      | 32/421 [00:01<00:21, 17.87it/s]\u001b[A\n",
      "  8%|███▍                                      | 34/421 [00:01<00:22, 17.17it/s]\u001b[A\n",
      "  9%|███▌                                      | 36/421 [00:02<00:22, 16.97it/s]\u001b[A\n",
      "  9%|███▊                                      | 38/421 [00:02<00:22, 16.85it/s]\u001b[A\n",
      " 10%|███▉                                      | 40/421 [00:02<00:22, 16.83it/s]\u001b[A\n",
      " 10%|████▏                                     | 42/421 [00:02<00:23, 16.36it/s]\u001b[A\n",
      " 10%|████▍                                     | 44/421 [00:02<00:22, 16.47it/s]\u001b[A\n",
      " 11%|████▌                                     | 46/421 [00:02<00:22, 16.50it/s]\u001b[A\n",
      " 11%|████▊                                     | 48/421 [00:02<00:22, 16.89it/s]\u001b[A\n",
      " 12%|█████                                     | 51/421 [00:02<00:20, 18.26it/s]\u001b[A\n",
      " 13%|█████▎                                    | 53/421 [00:03<00:19, 18.48it/s]\u001b[A\n",
      " 13%|█████▍                                    | 55/421 [00:03<00:20, 17.93it/s]\u001b[A\n",
      " 14%|█████▋                                    | 57/421 [00:03<00:21, 17.26it/s]\u001b[A\n",
      " 14%|█████▉                                    | 60/421 [00:03<00:19, 18.29it/s]\u001b[A\n",
      " 15%|██████▏                                   | 62/421 [00:03<00:19, 18.44it/s]\u001b[A\n",
      " 15%|██████▍                                   | 64/421 [00:03<00:19, 18.04it/s]\u001b[A\n",
      " 16%|██████▌                                   | 66/421 [00:03<00:20, 17.49it/s]\u001b[A\n",
      " 16%|██████▊                                   | 68/421 [00:03<00:21, 16.70it/s]\u001b[A\n",
      " 17%|██████▉                                   | 70/421 [00:04<00:20, 17.11it/s]\u001b[A\n",
      " 17%|███████▏                                  | 72/421 [00:04<00:20, 17.20it/s]\u001b[A\n",
      " 18%|███████▍                                  | 74/421 [00:04<00:19, 17.50it/s]\u001b[A\n",
      " 18%|███████▋                                  | 77/421 [00:04<00:18, 18.42it/s]\u001b[A\n",
      " 19%|███████▉                                  | 79/421 [00:04<00:19, 17.77it/s]\u001b[A\n",
      " 19%|████████                                  | 81/421 [00:04<00:19, 17.36it/s]\u001b[A\n",
      " 20%|████████▎                                 | 83/421 [00:04<00:19, 17.37it/s]\u001b[A\n",
      " 20%|████████▍                                 | 85/421 [00:04<00:18, 17.77it/s]\u001b[A\n",
      " 21%|████████▋                                 | 87/421 [00:04<00:20, 16.53it/s]\u001b[A\n",
      " 21%|████████▉                                 | 89/421 [00:05<00:19, 17.02it/s]\u001b[A\n",
      " 22%|█████████                                 | 91/421 [00:05<00:19, 16.74it/s]\u001b[A\n",
      " 22%|█████████▎                                | 93/421 [00:05<00:21, 15.58it/s]\u001b[A\n",
      " 23%|█████████▍                                | 95/421 [00:05<00:20, 15.93it/s]\u001b[A\n",
      " 23%|█████████▋                                | 97/421 [00:05<00:19, 16.24it/s]\u001b[A\n",
      " 24%|█████████▉                                | 99/421 [00:05<00:20, 15.78it/s]\u001b[A\n",
      " 24%|█████████▊                               | 101/421 [00:05<00:20, 15.47it/s]\u001b[A\n",
      " 24%|██████████                               | 103/421 [00:06<00:20, 15.64it/s]\u001b[A\n",
      " 25%|██████████▏                              | 105/421 [00:06<00:20, 15.41it/s]\u001b[A\n",
      " 25%|██████████▍                              | 107/421 [00:06<00:19, 16.46it/s]\u001b[A\n",
      " 26%|██████████▌                              | 109/421 [00:06<00:19, 16.11it/s]\u001b[A\n",
      " 26%|██████████▊                              | 111/421 [00:06<00:20, 15.37it/s]\u001b[A\n",
      " 27%|███████████                              | 113/421 [00:06<00:21, 14.33it/s]\u001b[A\n",
      " 27%|███████████▏                             | 115/421 [00:06<00:21, 14.18it/s]\u001b[A\n",
      " 28%|███████████▍                             | 117/421 [00:06<00:20, 14.84it/s]\u001b[A\n",
      " 28%|███████████▌                             | 119/421 [00:07<00:19, 15.13it/s]\u001b[A\n",
      " 29%|███████████▊                             | 121/421 [00:07<00:18, 15.81it/s]\u001b[A\n",
      " 29%|███████████▉                             | 123/421 [00:07<00:19, 15.66it/s]\u001b[A\n",
      " 30%|████████████▏                            | 125/421 [00:07<00:18, 16.06it/s]\u001b[A\n",
      " 30%|████████████▎                            | 127/421 [00:07<00:18, 15.58it/s]\u001b[A\n",
      " 31%|████████████▌                            | 129/421 [00:07<00:17, 16.25it/s]\u001b[A\n",
      " 31%|████████████▊                            | 131/421 [00:07<00:18, 15.76it/s]\u001b[A\n",
      " 32%|████████████▉                            | 133/421 [00:07<00:18, 15.28it/s]\u001b[A\n",
      " 32%|█████████████▏                           | 135/421 [00:08<00:17, 16.10it/s]\u001b[A\n",
      " 33%|█████████████▎                           | 137/421 [00:08<00:18, 15.60it/s]\u001b[A\n",
      " 33%|█████████████▌                           | 139/421 [00:08<00:17, 16.07it/s]\u001b[A\n",
      " 33%|█████████████▋                           | 141/421 [00:08<00:17, 15.71it/s]\u001b[A\n",
      " 34%|█████████████▉                           | 143/421 [00:08<00:17, 15.54it/s]\u001b[A\n",
      " 34%|██████████████                           | 145/421 [00:08<00:17, 16.14it/s]\u001b[A\n",
      " 35%|██████████████▎                          | 147/421 [00:08<00:17, 15.76it/s]\u001b[A\n",
      " 35%|██████████████▌                          | 149/421 [00:08<00:18, 15.09it/s]\u001b[A\n",
      " 36%|██████████████▋                          | 151/421 [00:09<00:18, 14.99it/s]\u001b[A\n",
      " 36%|██████████████▉                          | 153/421 [00:09<00:17, 15.39it/s]\u001b[A\n",
      " 37%|███████████████                          | 155/421 [00:09<00:18, 14.65it/s]\u001b[A\n",
      " 37%|███████████████▎                         | 157/421 [00:09<00:17, 14.94it/s]\u001b[A\n",
      " 38%|███████████████▍                         | 159/421 [00:09<00:16, 15.63it/s]\u001b[A\n",
      " 38%|███████████████▋                         | 161/421 [00:09<00:16, 15.85it/s]\u001b[A\n",
      " 39%|███████████████▊                         | 163/421 [00:09<00:17, 14.41it/s]\u001b[A\n",
      " 39%|████████████████                         | 165/421 [00:10<00:17, 14.83it/s]\u001b[A\n",
      " 40%|████████████████▎                        | 167/421 [00:10<00:16, 15.30it/s]\u001b[A\n",
      " 40%|████████████████▍                        | 169/421 [00:10<00:16, 15.57it/s]\u001b[A\n",
      " 41%|████████████████▋                        | 171/421 [00:10<00:15, 15.67it/s]\u001b[A\n",
      " 41%|████████████████▊                        | 173/421 [00:10<00:15, 15.88it/s]\u001b[A\n",
      " 42%|█████████████████                        | 175/421 [00:10<00:14, 16.48it/s]\u001b[A\n",
      " 42%|█████████████████▏                       | 177/421 [00:10<00:14, 16.88it/s]\u001b[A\n",
      " 43%|█████████████████▍                       | 179/421 [00:10<00:15, 16.07it/s]\u001b[A\n",
      " 43%|█████████████████▋                       | 181/421 [00:11<00:14, 16.42it/s]\u001b[A\n",
      " 44%|█████████████████▉                       | 184/421 [00:11<00:13, 17.64it/s]\u001b[A\n",
      " 44%|██████████████████                       | 186/421 [00:11<00:13, 17.30it/s]\u001b[A\n",
      " 45%|██████████████████▎                      | 188/421 [00:11<00:13, 17.15it/s]\u001b[A\n",
      " 45%|██████████████████▌                      | 190/421 [00:11<00:13, 17.06it/s]\u001b[A\n",
      " 46%|██████████████████▋                      | 192/421 [00:11<00:13, 16.53it/s]\u001b[A\n",
      " 46%|██████████████████▉                      | 194/421 [00:11<00:14, 16.03it/s]\u001b[A\n",
      " 47%|███████████████████                      | 196/421 [00:11<00:13, 16.79it/s]\u001b[A\n",
      " 47%|███████████████████▎                     | 198/421 [00:12<00:13, 16.92it/s]\u001b[A\n",
      " 48%|███████████████████▍                     | 200/421 [00:12<00:13, 16.16it/s]\u001b[A\n",
      " 48%|███████████████████▋                     | 202/421 [00:12<00:13, 16.32it/s]\u001b[A\n",
      " 48%|███████████████████▊                     | 204/421 [00:12<00:13, 16.42it/s]\u001b[A\n",
      " 49%|████████████████████                     | 206/421 [00:12<00:12, 16.74it/s]\u001b[A\n",
      " 49%|████████████████████▎                    | 208/421 [00:12<00:13, 16.09it/s]\u001b[A\n",
      " 50%|████████████████████▍                    | 210/421 [00:12<00:12, 16.43it/s]\u001b[A\n",
      " 50%|████████████████████▋                    | 212/421 [00:12<00:12, 16.30it/s]\u001b[A\n",
      " 51%|████████████████████▊                    | 214/421 [00:12<00:12, 16.09it/s]\u001b[A\n",
      " 52%|█████████████████████▏                   | 217/421 [00:13<00:11, 17.40it/s]\u001b[A\n",
      " 52%|█████████████████████▎                   | 219/421 [00:13<00:11, 16.87it/s]\u001b[A\n",
      " 52%|█████████████████████▌                   | 221/421 [00:13<00:11, 16.87it/s]\u001b[A\n",
      " 53%|█████████████████████▋                   | 223/421 [00:13<00:12, 16.39it/s]\u001b[A\n",
      " 53%|█████████████████████▉                   | 225/421 [00:13<00:11, 16.36it/s]\u001b[A\n",
      " 54%|██████████████████████                   | 227/421 [00:13<00:12, 15.85it/s]\u001b[A\n",
      " 54%|██████████████████████▎                  | 229/421 [00:13<00:12, 15.39it/s]\u001b[A\n",
      " 55%|██████████████████████▍                  | 231/421 [00:14<00:12, 15.00it/s]\u001b[A\n",
      " 55%|██████████████████████▋                  | 233/421 [00:14<00:13, 14.31it/s]\u001b[A\n",
      " 56%|██████████████████████▉                  | 235/421 [00:14<00:12, 14.78it/s]\u001b[A\n",
      " 56%|███████████████████████                  | 237/421 [00:14<00:12, 15.10it/s]\u001b[A\n",
      " 57%|███████████████████████▎                 | 239/421 [00:14<00:12, 14.65it/s]\u001b[A\n",
      " 57%|███████████████████████▍                 | 241/421 [00:14<00:12, 14.95it/s]\u001b[A\n",
      " 58%|███████████████████████▋                 | 243/421 [00:14<00:11, 15.62it/s]\u001b[A\n",
      " 58%|███████████████████████▊                 | 245/421 [00:14<00:11, 15.64it/s]\u001b[A\n",
      " 59%|████████████████████████                 | 247/421 [00:15<00:10, 15.92it/s]\u001b[A\n",
      " 59%|████████████████████████▏                | 249/421 [00:15<00:10, 16.15it/s]\u001b[A\n",
      " 60%|████████████████████████▍                | 251/421 [00:15<00:10, 15.89it/s]\u001b[A\n",
      " 60%|████████████████████████▋                | 253/421 [00:15<00:10, 15.62it/s]\u001b[A\n",
      " 61%|████████████████████████▊                | 255/421 [00:15<00:10, 15.19it/s]\u001b[A\n",
      " 61%|█████████████████████████▏               | 258/421 [00:15<00:09, 16.57it/s]\u001b[A\n",
      " 62%|█████████████████████████▎               | 260/421 [00:15<00:10, 16.05it/s]\u001b[A\n",
      " 62%|█████████████████████████▌               | 262/421 [00:16<00:10, 15.53it/s]\u001b[A\n",
      " 63%|█████████████████████████▋               | 264/421 [00:16<00:10, 15.24it/s]\u001b[A\n",
      " 63%|█████████████████████████▉               | 266/421 [00:16<00:10, 15.25it/s]\u001b[A\n",
      " 64%|██████████████████████████               | 268/421 [00:16<00:10, 14.88it/s]\u001b[A\n",
      " 64%|██████████████████████████▎              | 270/421 [00:16<00:09, 15.66it/s]\u001b[A\n",
      " 65%|██████████████████████████▍              | 272/421 [00:16<00:09, 16.17it/s]\u001b[A\n",
      " 65%|██████████████████████████▋              | 274/421 [00:16<00:08, 16.51it/s]\u001b[A\n",
      " 66%|██████████████████████████▉              | 276/421 [00:16<00:08, 17.26it/s]\u001b[A\n",
      " 66%|███████████████████████████              | 278/421 [00:17<00:08, 17.84it/s]\u001b[A\n",
      " 67%|███████████████████████████▎             | 280/421 [00:17<00:08, 16.65it/s]\u001b[A\n",
      " 67%|███████████████████████████▍             | 282/421 [00:17<00:08, 15.83it/s]\u001b[A\n",
      " 67%|███████████████████████████▋             | 284/421 [00:17<00:08, 15.27it/s]\u001b[A\n",
      " 68%|███████████████████████████▊             | 286/421 [00:17<00:08, 15.22it/s]\u001b[A\n",
      " 68%|████████████████████████████             | 288/421 [00:17<00:08, 16.00it/s]\u001b[A\n",
      " 69%|████████████████████████████▏            | 290/421 [00:17<00:07, 16.47it/s]\u001b[A\n",
      " 69%|████████████████████████████▍            | 292/421 [00:17<00:08, 15.85it/s]\u001b[A\n",
      " 70%|████████████████████████████▋            | 294/421 [00:18<00:07, 16.04it/s]\u001b[A\n",
      " 70%|████████████████████████████▊            | 296/421 [00:18<00:07, 16.02it/s]\u001b[A\n",
      " 71%|█████████████████████████████            | 298/421 [00:18<00:07, 16.35it/s]\u001b[A\n",
      " 71%|█████████████████████████████▏           | 300/421 [00:18<00:07, 15.89it/s]\u001b[A\n",
      " 72%|█████████████████████████████▍           | 302/421 [00:18<00:07, 16.08it/s]\u001b[A\n",
      " 72%|█████████████████████████████▌           | 304/421 [00:18<00:07, 15.78it/s]\u001b[A\n",
      " 73%|█████████████████████████████▊           | 306/421 [00:18<00:07, 15.56it/s]\u001b[A\n",
      " 73%|█████████████████████████████▉           | 308/421 [00:18<00:07, 14.40it/s]\u001b[A\n",
      " 74%|██████████████████████████████▏          | 310/421 [00:19<00:07, 15.69it/s]\u001b[A\n",
      " 74%|██████████████████████████████▍          | 312/421 [00:19<00:06, 16.02it/s]\u001b[A\n",
      " 75%|██████████████████████████████▌          | 314/421 [00:19<00:06, 16.91it/s]\u001b[A\n",
      " 75%|██████████████████████████████▊          | 316/421 [00:19<00:06, 16.94it/s]\u001b[A\n",
      " 76%|██████████████████████████████▉          | 318/421 [00:19<00:05, 17.62it/s]\u001b[A\n",
      " 76%|███████████████████████████████▏         | 320/421 [00:19<00:05, 17.59it/s]\u001b[A\n",
      " 76%|███████████████████████████████▎         | 322/421 [00:19<00:05, 17.02it/s]\u001b[A\n",
      " 77%|███████████████████████████████▌         | 324/421 [00:19<00:05, 17.00it/s]\u001b[A\n",
      " 77%|███████████████████████████████▋         | 326/421 [00:19<00:05, 17.07it/s]\u001b[A\n",
      " 78%|███████████████████████████████▉         | 328/421 [00:20<00:05, 16.48it/s]\u001b[A\n",
      " 78%|████████████████████████████████▏        | 330/421 [00:20<00:05, 16.95it/s]\u001b[A\n",
      " 79%|████████████████████████████████▎        | 332/421 [00:20<00:05, 16.55it/s]\u001b[A\n",
      " 79%|████████████████████████████████▌        | 334/421 [00:20<00:05, 16.39it/s]\u001b[A\n",
      " 80%|████████████████████████████████▋        | 336/421 [00:20<00:05, 16.49it/s]\u001b[A\n",
      " 80%|████████████████████████████████▉        | 338/421 [00:20<00:04, 16.83it/s]\u001b[A\n",
      " 81%|█████████████████████████████████        | 340/421 [00:20<00:05, 15.80it/s]\u001b[A\n",
      " 81%|█████████████████████████████████▎       | 342/421 [00:20<00:04, 16.17it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▌       | 344/421 [00:21<00:04, 16.16it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▋       | 346/421 [00:21<00:04, 16.18it/s]\u001b[A\n",
      " 83%|█████████████████████████████████▉       | 348/421 [00:21<00:04, 15.54it/s]\u001b[A\n",
      " 83%|██████████████████████████████████       | 350/421 [00:21<00:04, 15.48it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▎      | 352/421 [00:21<00:04, 15.10it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▍      | 354/421 [00:21<00:04, 14.23it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▋      | 356/421 [00:21<00:04, 13.82it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▊      | 358/421 [00:22<00:04, 13.37it/s]\u001b[A\n",
      " 86%|███████████████████████████████████      | 360/421 [00:22<00:04, 14.07it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▎     | 362/421 [00:22<00:03, 15.08it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▍     | 364/421 [00:22<00:03, 16.11it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▋     | 366/421 [00:22<00:03, 16.05it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▊     | 368/421 [00:22<00:03, 15.39it/s]\u001b[A\n",
      " 88%|████████████████████████████████████▏    | 371/421 [00:22<00:03, 16.38it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▎    | 373/421 [00:23<00:02, 16.70it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▌    | 375/421 [00:23<00:02, 16.45it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▋    | 377/421 [00:23<00:02, 16.15it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▉    | 379/421 [00:23<00:02, 16.89it/s]\u001b[A\n",
      " 90%|█████████████████████████████████████    | 381/421 [00:23<00:02, 15.97it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▎   | 383/421 [00:23<00:02, 15.06it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▍   | 385/421 [00:23<00:02, 14.89it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▋   | 387/421 [00:23<00:02, 15.07it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▉   | 389/421 [00:24<00:02, 15.42it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████   | 391/421 [00:24<00:01, 15.24it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████▎  | 393/421 [00:24<00:01, 15.01it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▍  | 395/421 [00:24<00:01, 14.95it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▋  | 397/421 [00:24<00:01, 15.62it/s]\u001b[A\n",
      " 95%|██████████████████████████████████████▊  | 399/421 [00:24<00:01, 15.66it/s]\u001b[A\n",
      " 95%|███████████████████████████████████████  | 401/421 [00:24<00:01, 16.38it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▏ | 403/421 [00:24<00:01, 16.55it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▍ | 405/421 [00:25<00:00, 16.63it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▋ | 407/421 [00:25<00:00, 17.06it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▊ | 409/421 [00:25<00:00, 16.90it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████ | 411/421 [00:25<00:00, 17.24it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████▎| 414/421 [00:25<00:00, 17.67it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▌| 416/421 [00:25<00:00, 16.59it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▋| 418/421 [00:25<00:00, 17.03it/s]\u001b[A\n",
      "                                                                                \u001b[A\n",
      " 16%|█████▉                                | 500/3200 [19:15<1:31:12,  2.03s/it]\n",
      "100%|█████████████████████████████████████████| 421/421 [00:26<00:00, 17.13it/s]\u001b[A\n",
      "                                                                                \u001b[ASaving model checkpoint to ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-500\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-500/config.json\n",
      "Model weights saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-500/pytorch_model.bin\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-500/preprocessor_config.json\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      " 31%|███████████▌                         | 1000/3200 [38:36<1:24:46,  2.31s/it]The following columns in the evaluation set  don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
      "***** Running Evaluation *****\n",
      "  Num examples = 421\n",
      "  Batch size = 1\n",
      "\n",
      "  0%|                                                   | 0/421 [00:00<?, ?it/s]\u001b[A\n",
      "  1%|▎                                          | 3/421 [00:00<00:17, 23.39it/s]\u001b[A\n",
      "  1%|▌                                          | 6/421 [00:00<00:23, 18.04it/s]\u001b[A\n",
      "  2%|▊                                          | 8/421 [00:00<00:25, 16.09it/s]\u001b[A\n",
      "  2%|▉                                         | 10/421 [00:00<00:25, 16.01it/s]\u001b[A\n",
      "  3%|█▏                                        | 12/421 [00:00<00:25, 16.34it/s]\u001b[A\n",
      "  3%|█▍                                        | 14/421 [00:00<00:24, 16.56it/s]\u001b[A\n",
      "  4%|█▌                                        | 16/421 [00:00<00:24, 16.57it/s]\u001b[A\n",
      "  5%|█▉                                        | 19/421 [00:01<00:22, 17.57it/s]\u001b[A\n",
      "  5%|██▏                                       | 22/421 [00:01<00:21, 18.34it/s]\u001b[A\n",
      "  6%|██▍                                       | 24/421 [00:01<00:21, 18.06it/s]\u001b[A\n",
      "  6%|██▌                                       | 26/421 [00:01<00:21, 18.37it/s]\u001b[A\n",
      "  7%|██▊                                       | 28/421 [00:01<00:21, 18.55it/s]\u001b[A\n",
      "  7%|██▉                                       | 30/421 [00:01<00:21, 17.81it/s]\u001b[A\n",
      "  8%|███▏                                      | 32/421 [00:01<00:22, 17.46it/s]\u001b[A\n",
      "  8%|███▍                                      | 34/421 [00:01<00:22, 16.95it/s]\u001b[A\n",
      "  9%|███▌                                      | 36/421 [00:02<00:23, 16.64it/s]\u001b[A\n",
      "  9%|███▊                                      | 38/421 [00:02<00:23, 16.59it/s]\u001b[A\n",
      " 10%|███▉                                      | 40/421 [00:02<00:23, 16.55it/s]\u001b[A\n",
      " 10%|████▏                                     | 42/421 [00:02<00:23, 16.18it/s]\u001b[A\n",
      " 10%|████▍                                     | 44/421 [00:02<00:23, 16.17it/s]\u001b[A\n",
      " 11%|████▌                                     | 46/421 [00:02<00:23, 16.25it/s]\u001b[A\n",
      " 11%|████▊                                     | 48/421 [00:02<00:22, 16.58it/s]\u001b[A\n",
      " 12%|█████                                     | 51/421 [00:02<00:20, 17.98it/s]\u001b[A\n",
      " 13%|█████▎                                    | 53/421 [00:03<00:20, 18.08it/s]\u001b[A\n",
      " 13%|█████▍                                    | 55/421 [00:03<00:20, 17.53it/s]\u001b[A\n",
      " 14%|█████▋                                    | 57/421 [00:03<00:22, 15.88it/s]\u001b[A\n",
      " 14%|█████▉                                    | 60/421 [00:03<00:20, 17.32it/s]\u001b[A\n",
      " 15%|██████▏                                   | 62/421 [00:03<00:20, 17.71it/s]\u001b[A\n",
      " 15%|██████▍                                   | 64/421 [00:03<00:20, 17.66it/s]\u001b[A\n",
      " 16%|██████▌                                   | 66/421 [00:03<00:21, 16.82it/s]\u001b[A\n",
      " 16%|██████▊                                   | 68/421 [00:03<00:22, 15.77it/s]\u001b[A\n",
      " 17%|██████▉                                   | 70/421 [00:04<00:21, 16.49it/s]\u001b[A\n",
      " 17%|███████▏                                  | 72/421 [00:04<00:20, 16.82it/s]\u001b[A\n",
      " 18%|███████▍                                  | 74/421 [00:04<00:20, 17.14it/s]\u001b[A\n",
      " 18%|███████▋                                  | 77/421 [00:04<00:19, 17.65it/s]\u001b[A\n",
      " 19%|███████▉                                  | 79/421 [00:04<00:20, 16.94it/s]\u001b[A\n",
      " 19%|████████                                  | 81/421 [00:04<00:21, 15.90it/s]\u001b[A\n",
      " 20%|████████▎                                 | 83/421 [00:04<00:21, 15.82it/s]\u001b[A\n",
      " 20%|████████▍                                 | 85/421 [00:04<00:20, 16.45it/s]\u001b[A\n",
      " 21%|████████▋                                 | 87/421 [00:05<00:21, 15.62it/s]\u001b[A\n",
      " 21%|████████▉                                 | 89/421 [00:05<00:20, 16.13it/s]\u001b[A\n",
      " 22%|█████████                                 | 91/421 [00:05<00:19, 16.54it/s]\u001b[A\n",
      " 22%|█████████▎                                | 93/421 [00:05<00:21, 15.25it/s]\u001b[A\n",
      " 23%|█████████▍                                | 95/421 [00:05<00:20, 15.62it/s]\u001b[A\n",
      " 23%|█████████▋                                | 97/421 [00:05<00:20, 15.85it/s]\u001b[A\n",
      " 24%|█████████▉                                | 99/421 [00:05<00:20, 15.44it/s]\u001b[A\n",
      " 24%|█████████▊                               | 101/421 [00:06<00:21, 15.24it/s]\u001b[A\n",
      " 24%|██████████                               | 103/421 [00:06<00:21, 15.07it/s]\u001b[A\n",
      " 25%|██████████▏                              | 105/421 [00:06<00:21, 14.92it/s]\u001b[A\n",
      " 25%|██████████▍                              | 107/421 [00:06<00:19, 16.11it/s]\u001b[A\n",
      " 26%|██████████▌                              | 109/421 [00:06<00:19, 15.84it/s]\u001b[A\n",
      " 26%|██████████▊                              | 111/421 [00:06<00:20, 15.29it/s]\u001b[A\n",
      " 27%|███████████                              | 113/421 [00:06<00:21, 14.41it/s]\u001b[A\n",
      " 27%|███████████▏                             | 115/421 [00:06<00:21, 14.18it/s]\u001b[A\n",
      " 28%|███████████▍                             | 117/421 [00:07<00:20, 15.07it/s]\u001b[A\n",
      " 28%|███████████▌                             | 119/421 [00:07<00:19, 15.13it/s]\u001b[A\n",
      " 29%|███████████▊                             | 121/421 [00:07<00:19, 15.58it/s]\u001b[A\n",
      " 29%|███████████▉                             | 123/421 [00:07<00:19, 15.33it/s]\u001b[A\n",
      " 30%|████████████▏                            | 125/421 [00:07<00:18, 15.65it/s]\u001b[A\n",
      " 30%|████████████▎                            | 127/421 [00:07<00:19, 15.21it/s]\u001b[A\n",
      " 31%|████████████▌                            | 129/421 [00:07<00:18, 15.94it/s]\u001b[A\n",
      " 31%|████████████▊                            | 131/421 [00:07<00:18, 15.62it/s]\u001b[A\n",
      " 32%|████████████▉                            | 133/421 [00:08<00:19, 15.14it/s]\u001b[A\n",
      " 32%|█████████████▏                           | 135/421 [00:08<00:18, 15.70it/s]\u001b[A\n",
      " 33%|█████████████▎                           | 137/421 [00:08<00:18, 15.43it/s]\u001b[A\n",
      " 33%|█████████████▌                           | 139/421 [00:08<00:17, 15.71it/s]\u001b[A\n",
      " 33%|█████████████▋                           | 141/421 [00:08<00:18, 15.19it/s]\u001b[A\n",
      " 34%|█████████████▉                           | 143/421 [00:08<00:18, 15.07it/s]\u001b[A\n",
      " 34%|██████████████                           | 145/421 [00:08<00:17, 15.55it/s]\u001b[A\n",
      " 35%|██████████████▎                          | 147/421 [00:09<00:17, 15.62it/s]\u001b[A\n",
      " 35%|██████████████▌                          | 149/421 [00:09<00:17, 15.22it/s]\u001b[A\n",
      " 36%|██████████████▋                          | 151/421 [00:09<00:18, 14.87it/s]\u001b[A\n",
      " 36%|██████████████▉                          | 153/421 [00:09<00:17, 15.45it/s]\u001b[A\n",
      " 37%|███████████████                          | 155/421 [00:09<00:18, 14.65it/s]\u001b[A\n",
      " 37%|███████████████▎                         | 157/421 [00:09<00:17, 14.94it/s]\u001b[A\n",
      " 38%|███████████████▍                         | 159/421 [00:09<00:17, 15.10it/s]\u001b[A\n",
      " 38%|███████████████▋                         | 161/421 [00:09<00:16, 15.59it/s]\u001b[A\n",
      " 39%|███████████████▊                         | 163/421 [00:10<00:18, 14.05it/s]\u001b[A\n",
      " 39%|████████████████                         | 165/421 [00:10<00:18, 13.54it/s]\u001b[A\n",
      " 40%|████████████████▎                        | 167/421 [00:10<00:17, 14.25it/s]\u001b[A\n",
      " 40%|████████████████▍                        | 169/421 [00:10<00:16, 14.91it/s]\u001b[A\n",
      " 41%|████████████████▋                        | 171/421 [00:10<00:16, 15.04it/s]\u001b[A\n",
      " 41%|████████████████▊                        | 173/421 [00:10<00:16, 15.41it/s]\u001b[A\n",
      " 42%|█████████████████                        | 175/421 [00:10<00:15, 16.01it/s]\u001b[A\n",
      " 42%|█████████████████▏                       | 177/421 [00:11<00:14, 16.61it/s]\u001b[A\n",
      " 43%|█████████████████▍                       | 179/421 [00:11<00:15, 15.82it/s]\u001b[A\n",
      " 43%|█████████████████▋                       | 181/421 [00:11<00:14, 16.24it/s]\u001b[A\n",
      " 44%|█████████████████▉                       | 184/421 [00:11<00:13, 17.51it/s]\u001b[A\n",
      " 44%|██████████████████                       | 186/421 [00:11<00:13, 17.00it/s]\u001b[A\n",
      " 45%|██████████████████▎                      | 188/421 [00:11<00:13, 16.65it/s]\u001b[A\n",
      " 45%|██████████████████▌                      | 190/421 [00:11<00:13, 16.51it/s]\u001b[A\n",
      " 46%|██████████████████▋                      | 192/421 [00:11<00:14, 16.17it/s]\u001b[A\n",
      " 46%|██████████████████▉                      | 194/421 [00:12<00:14, 16.13it/s]\u001b[A\n",
      " 47%|███████████████████                      | 196/421 [00:12<00:13, 17.06it/s]\u001b[A\n",
      " 47%|███████████████████▎                     | 198/421 [00:12<00:12, 17.40it/s]\u001b[A\n",
      " 48%|███████████████████▍                     | 200/421 [00:12<00:13, 16.53it/s]\u001b[A\n",
      " 48%|███████████████████▋                     | 202/421 [00:12<00:13, 16.65it/s]\u001b[A\n",
      " 48%|███████████████████▊                     | 204/421 [00:12<00:13, 16.42it/s]\u001b[A\n",
      " 49%|████████████████████                     | 206/421 [00:12<00:12, 16.73it/s]\u001b[A\n",
      " 49%|████████████████████▎                    | 208/421 [00:12<00:13, 16.03it/s]\u001b[A\n",
      " 50%|████████████████████▍                    | 210/421 [00:13<00:12, 16.24it/s]\u001b[A\n",
      " 50%|████████████████████▋                    | 212/421 [00:13<00:12, 16.43it/s]\u001b[A\n",
      " 51%|████████████████████▊                    | 214/421 [00:13<00:12, 16.29it/s]\u001b[A\n",
      " 52%|█████████████████████▏                   | 217/421 [00:13<00:11, 17.61it/s]\u001b[A\n",
      " 52%|█████████████████████▎                   | 219/421 [00:13<00:12, 16.78it/s]\u001b[A\n",
      " 52%|█████████████████████▌                   | 221/421 [00:13<00:11, 16.70it/s]\u001b[A\n",
      " 53%|█████████████████████▋                   | 223/421 [00:13<00:12, 16.16it/s]\u001b[A\n",
      " 53%|█████████████████████▉                   | 225/421 [00:13<00:12, 16.26it/s]\u001b[A\n",
      " 54%|██████████████████████                   | 227/421 [00:14<00:12, 15.71it/s]\u001b[A\n",
      " 54%|██████████████████████▎                  | 229/421 [00:14<00:12, 15.68it/s]\u001b[A\n",
      " 55%|██████████████████████▍                  | 231/421 [00:14<00:12, 15.31it/s]\u001b[A\n",
      " 55%|██████████████████████▋                  | 233/421 [00:14<00:12, 14.77it/s]\u001b[A\n",
      " 56%|██████████████████████▉                  | 235/421 [00:14<00:12, 15.09it/s]\u001b[A\n",
      " 56%|███████████████████████                  | 237/421 [00:14<00:12, 15.25it/s]\u001b[A\n",
      " 57%|███████████████████████▎                 | 239/421 [00:14<00:12, 15.00it/s]\u001b[A\n",
      " 57%|███████████████████████▍                 | 241/421 [00:14<00:11, 15.27it/s]\u001b[A\n",
      " 58%|███████████████████████▋                 | 243/421 [00:15<00:11, 15.89it/s]\u001b[A\n",
      " 58%|███████████████████████▊                 | 245/421 [00:15<00:11, 15.86it/s]\u001b[A\n",
      " 59%|████████████████████████                 | 247/421 [00:15<00:10, 16.23it/s]\u001b[A\n",
      " 59%|████████████████████████▏                | 249/421 [00:15<00:10, 16.56it/s]\u001b[A\n",
      " 60%|████████████████████████▍                | 251/421 [00:15<00:10, 16.06it/s]\u001b[A\n",
      " 60%|████████████████████████▋                | 253/421 [00:15<00:10, 16.02it/s]\u001b[A\n",
      " 61%|████████████████████████▊                | 255/421 [00:15<00:10, 15.59it/s]\u001b[A\n",
      " 61%|█████████████████████████▏               | 258/421 [00:16<00:09, 17.04it/s]\u001b[A\n",
      " 62%|█████████████████████████▎               | 260/421 [00:16<00:09, 16.53it/s]\u001b[A\n",
      " 62%|█████████████████████████▌               | 262/421 [00:16<00:09, 15.95it/s]\u001b[A\n",
      " 63%|█████████████████████████▋               | 264/421 [00:16<00:10, 15.57it/s]\u001b[A\n",
      " 63%|█████████████████████████▉               | 266/421 [00:16<00:10, 15.05it/s]\u001b[A\n",
      " 64%|██████████████████████████               | 268/421 [00:16<00:10, 14.47it/s]\u001b[A\n",
      " 64%|██████████████████████████▎              | 270/421 [00:16<00:09, 15.33it/s]\u001b[A\n",
      " 65%|██████████████████████████▍              | 272/421 [00:16<00:09, 15.60it/s]\u001b[A\n",
      " 65%|██████████████████████████▋              | 274/421 [00:17<00:09, 15.86it/s]\u001b[A\n",
      " 66%|██████████████████████████▉              | 277/421 [00:17<00:08, 17.43it/s]\u001b[A\n",
      " 66%|███████████████████████████▏             | 279/421 [00:17<00:08, 17.27it/s]\u001b[A\n",
      " 67%|███████████████████████████▎             | 281/421 [00:17<00:08, 16.38it/s]\u001b[A\n",
      " 67%|███████████████████████████▌             | 283/421 [00:17<00:08, 15.66it/s]\u001b[A\n",
      " 68%|███████████████████████████▊             | 285/421 [00:17<00:09, 14.68it/s]\u001b[A\n",
      " 68%|███████████████████████████▉             | 287/421 [00:17<00:08, 15.84it/s]\u001b[A\n",
      " 69%|████████████████████████████▏            | 289/421 [00:17<00:08, 16.09it/s]\u001b[A\n",
      " 69%|████████████████████████████▎            | 291/421 [00:18<00:07, 16.72it/s]\u001b[A\n",
      " 70%|████████████████████████████▌            | 293/421 [00:18<00:08, 15.99it/s]\u001b[A\n",
      " 70%|████████████████████████████▋            | 295/421 [00:18<00:08, 15.63it/s]\u001b[A\n",
      " 71%|████████████████████████████▉            | 297/421 [00:18<00:08, 15.02it/s]\u001b[A\n",
      " 71%|█████████████████████████████            | 299/421 [00:18<00:07, 15.38it/s]\u001b[A\n",
      " 71%|█████████████████████████████▎           | 301/421 [00:18<00:07, 15.11it/s]\u001b[A\n",
      " 72%|█████████████████████████████▌           | 303/421 [00:18<00:07, 15.09it/s]\u001b[A\n",
      " 72%|█████████████████████████████▋           | 305/421 [00:19<00:07, 15.78it/s]\u001b[A\n",
      " 73%|█████████████████████████████▉           | 307/421 [00:19<00:07, 15.38it/s]\u001b[A\n",
      " 73%|██████████████████████████████           | 309/421 [00:19<00:07, 14.96it/s]\u001b[A\n",
      " 74%|██████████████████████████████▎          | 311/421 [00:19<00:06, 15.99it/s]\u001b[A\n",
      " 74%|██████████████████████████████▍          | 313/421 [00:19<00:06, 16.28it/s]\u001b[A\n",
      " 75%|██████████████████████████████▋          | 315/421 [00:19<00:06, 16.25it/s]\u001b[A\n",
      " 75%|██████████████████████████████▊          | 317/421 [00:19<00:06, 16.81it/s]\u001b[A\n",
      " 76%|███████████████████████████████          | 319/421 [00:19<00:05, 17.11it/s]\u001b[A\n",
      " 76%|███████████████████████████████▎         | 321/421 [00:19<00:05, 17.09it/s]\u001b[A\n",
      " 77%|███████████████████████████████▍         | 323/421 [00:20<00:05, 16.54it/s]\u001b[A\n",
      " 77%|███████████████████████████████▋         | 325/421 [00:20<00:05, 16.77it/s]\u001b[A\n",
      " 78%|███████████████████████████████▊         | 327/421 [00:20<00:05, 17.09it/s]\u001b[A\n",
      " 78%|████████████████████████████████         | 329/421 [00:20<00:05, 16.28it/s]\u001b[A\n",
      " 79%|████████████████████████████████▏        | 331/421 [00:20<00:05, 16.57it/s]\u001b[A\n",
      " 79%|████████████████████████████████▍        | 333/421 [00:20<00:05, 16.12it/s]\u001b[A\n",
      " 80%|████████████████████████████████▌        | 335/421 [00:20<00:05, 16.28it/s]\u001b[A\n",
      " 80%|████████████████████████████████▊        | 337/421 [00:20<00:05, 16.24it/s]\u001b[A\n",
      " 81%|█████████████████████████████████        | 339/421 [00:21<00:05, 16.37it/s]\u001b[A\n",
      " 81%|█████████████████████████████████▏       | 341/421 [00:21<00:04, 16.13it/s]\u001b[A\n",
      " 81%|█████████████████████████████████▍       | 343/421 [00:21<00:04, 16.08it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▌       | 345/421 [00:21<00:04, 16.23it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▊       | 347/421 [00:21<00:04, 15.81it/s]\u001b[A\n",
      " 83%|█████████████████████████████████▉       | 349/421 [00:21<00:04, 15.53it/s]\u001b[A\n",
      " 83%|██████████████████████████████████▏      | 351/421 [00:21<00:04, 15.46it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▍      | 353/421 [00:22<00:04, 14.24it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▌      | 355/421 [00:22<00:04, 13.89it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▊      | 357/421 [00:22<00:04, 13.35it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▉      | 359/421 [00:22<00:04, 13.67it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▏     | 361/421 [00:22<00:04, 14.54it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▎     | 363/421 [00:22<00:03, 14.51it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▌     | 365/421 [00:22<00:03, 15.49it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▋     | 367/421 [00:22<00:03, 14.84it/s]\u001b[A\n",
      " 88%|███████████████████████████████████▉     | 369/421 [00:23<00:03, 15.15it/s]\u001b[A\n",
      " 88%|████████████████████████████████████▏    | 371/421 [00:23<00:03, 15.79it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▎    | 373/421 [00:23<00:02, 16.42it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▌    | 375/421 [00:23<00:02, 16.40it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▋    | 377/421 [00:23<00:02, 15.58it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▉    | 379/421 [00:23<00:02, 16.31it/s]\u001b[A\n",
      " 90%|█████████████████████████████████████    | 381/421 [00:23<00:02, 15.98it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▎   | 383/421 [00:24<00:02, 14.78it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▍   | 385/421 [00:24<00:02, 14.11it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▋   | 387/421 [00:24<00:02, 14.47it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▉   | 389/421 [00:24<00:02, 15.20it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████   | 391/421 [00:24<00:02, 14.99it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████▎  | 393/421 [00:24<00:01, 14.73it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▍  | 395/421 [00:24<00:01, 15.28it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▋  | 397/421 [00:24<00:01, 15.86it/s]\u001b[A\n",
      " 95%|██████████████████████████████████████▊  | 399/421 [00:25<00:01, 15.74it/s]\u001b[A\n",
      " 95%|███████████████████████████████████████  | 401/421 [00:25<00:01, 16.21it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▏ | 403/421 [00:25<00:01, 16.08it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▍ | 405/421 [00:25<00:00, 16.30it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▋ | 407/421 [00:25<00:00, 16.96it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▊ | 409/421 [00:25<00:00, 16.57it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████ | 411/421 [00:25<00:00, 16.64it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████▏| 413/421 [00:25<00:00, 17.41it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▍| 415/421 [00:26<00:00, 15.60it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▌| 417/421 [00:26<00:00, 15.97it/s]\u001b[A\n",
      "100%|████████████████████████████████████████▊| 419/421 [00:26<00:00, 16.83it/s]\u001b[A\n",
      "                                                                                \u001b[A\n",
      " 31%|███████████▌                         | 1000/3200 [39:02<1:24:46,  2.31s/it]\n",
      "100%|█████████████████████████████████████████| 421/421 [00:26<00:00, 16.29it/s]\u001b[A\n",
      "                                                                                \u001b[ASaving model checkpoint to ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1000\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1000/config.json\n",
      "Model weights saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1000/pytorch_model.bin\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1000/preprocessor_config.json\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      " 47%|██████████████████▎                    | 1500/3200 [59:17<52:27,  1.85s/it]The following columns in the evaluation set  don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
      "***** Running Evaluation *****\n",
      "  Num examples = 421\n",
      "  Batch size = 1\n",
      "\n",
      "  0%|                                                   | 0/421 [00:00<?, ?it/s]\u001b[A\n",
      "  1%|▎                                          | 3/421 [00:00<00:17, 23.39it/s]\u001b[A\n",
      "  1%|▌                                          | 6/421 [00:00<00:22, 18.25it/s]\u001b[A\n",
      "  2%|▊                                          | 8/421 [00:00<00:25, 16.29it/s]\u001b[A\n",
      "  2%|▉                                         | 10/421 [00:00<00:25, 16.30it/s]\u001b[A\n",
      "  3%|█▏                                        | 12/421 [00:00<00:24, 16.70it/s]\u001b[A\n",
      "  3%|█▍                                        | 14/421 [00:00<00:25, 16.13it/s]\u001b[A\n",
      "  4%|█▌                                        | 16/421 [00:00<00:25, 15.97it/s]\u001b[A\n",
      "  5%|█▉                                        | 19/421 [00:01<00:23, 17.22it/s]\u001b[A\n",
      "  5%|██▏                                       | 22/421 [00:01<00:21, 18.29it/s]\u001b[A\n",
      "  6%|██▍                                       | 24/421 [00:01<00:21, 18.06it/s]\u001b[A\n",
      "  6%|██▌                                       | 26/421 [00:01<00:21, 18.50it/s]\u001b[A\n",
      "  7%|██▊                                       | 28/421 [00:01<00:20, 18.81it/s]\u001b[A\n",
      "  7%|██▉                                       | 30/421 [00:01<00:21, 18.45it/s]\u001b[A\n",
      "  8%|███▏                                      | 32/421 [00:01<00:21, 17.84it/s]\u001b[A\n",
      "  8%|███▍                                      | 34/421 [00:01<00:22, 17.13it/s]\u001b[A\n",
      "  9%|███▌                                      | 36/421 [00:02<00:22, 16.82it/s]\u001b[A\n",
      "  9%|███▊                                      | 38/421 [00:02<00:22, 16.71it/s]\u001b[A\n",
      " 10%|███▉                                      | 40/421 [00:02<00:22, 16.60it/s]\u001b[A\n",
      " 10%|████▏                                     | 42/421 [00:02<00:23, 16.32it/s]\u001b[A\n",
      " 10%|████▍                                     | 44/421 [00:02<00:23, 16.38it/s]\u001b[A\n",
      " 11%|████▌                                     | 46/421 [00:02<00:22, 16.35it/s]\u001b[A\n",
      " 11%|████▊                                     | 48/421 [00:02<00:22, 16.85it/s]\u001b[A\n",
      " 12%|█████                                     | 51/421 [00:02<00:19, 18.54it/s]\u001b[A\n",
      " 13%|█████▎                                    | 53/421 [00:03<00:19, 18.86it/s]\u001b[A\n",
      " 13%|█████▍                                    | 55/421 [00:03<00:20, 18.11it/s]\u001b[A\n",
      " 14%|█████▋                                    | 57/421 [00:03<00:21, 17.31it/s]\u001b[A\n",
      " 14%|█████▉                                    | 60/421 [00:03<00:19, 18.14it/s]\u001b[A\n",
      " 15%|██████▏                                   | 62/421 [00:03<00:19, 18.33it/s]\u001b[A\n",
      " 15%|██████▍                                   | 64/421 [00:03<00:19, 18.24it/s]\u001b[A\n",
      " 16%|██████▌                                   | 66/421 [00:03<00:20, 17.60it/s]\u001b[A\n",
      " 16%|██████▊                                   | 68/421 [00:03<00:20, 17.38it/s]\u001b[A\n",
      " 17%|██████▉                                   | 70/421 [00:04<00:19, 17.66it/s]\u001b[A\n",
      " 17%|███████▏                                  | 72/421 [00:04<00:21, 16.02it/s]\u001b[A\n",
      " 18%|███████▍                                  | 74/421 [00:04<00:20, 16.68it/s]\u001b[A\n",
      " 18%|███████▋                                  | 77/421 [00:04<00:19, 17.70it/s]\u001b[A\n",
      " 19%|███████▉                                  | 79/421 [00:04<00:19, 17.16it/s]\u001b[A\n",
      " 19%|████████                                  | 81/421 [00:04<00:20, 16.83it/s]\u001b[A\n",
      " 20%|████████▎                                 | 83/421 [00:04<00:19, 17.00it/s]\u001b[A\n",
      " 20%|████████▍                                 | 85/421 [00:04<00:19, 17.48it/s]\u001b[A\n",
      " 21%|████████▋                                 | 87/421 [00:05<00:20, 16.69it/s]\u001b[A\n",
      " 21%|████████▉                                 | 89/421 [00:05<00:19, 17.25it/s]\u001b[A\n",
      " 22%|█████████                                 | 91/421 [00:05<00:18, 17.49it/s]\u001b[A\n",
      " 22%|█████████▎                                | 93/421 [00:05<00:20, 16.30it/s]\u001b[A\n",
      " 23%|█████████▍                                | 95/421 [00:05<00:19, 16.63it/s]\u001b[A\n",
      " 23%|█████████▋                                | 97/421 [00:05<00:19, 16.78it/s]\u001b[A\n",
      " 24%|█████████▉                                | 99/421 [00:05<00:19, 16.31it/s]\u001b[A\n",
      " 24%|█████████▊                               | 101/421 [00:05<00:20, 15.90it/s]\u001b[A\n",
      " 24%|██████████                               | 103/421 [00:05<00:19, 16.20it/s]\u001b[A\n",
      " 25%|██████████▏                              | 105/421 [00:06<00:19, 15.90it/s]\u001b[A\n",
      " 25%|██████████▍                              | 107/421 [00:06<00:18, 16.86it/s]\u001b[A\n",
      " 26%|██████████▌                              | 109/421 [00:06<00:18, 16.45it/s]\u001b[A\n",
      " 26%|██████████▊                              | 111/421 [00:06<00:19, 15.78it/s]\u001b[A\n",
      " 27%|███████████                              | 113/421 [00:06<00:20, 14.86it/s]\u001b[A\n",
      " 27%|███████████▏                             | 115/421 [00:06<00:21, 14.55it/s]\u001b[A\n",
      " 28%|███████████▍                             | 117/421 [00:06<00:19, 15.50it/s]\u001b[A\n",
      " 28%|███████████▌                             | 119/421 [00:07<00:19, 15.53it/s]\u001b[A\n",
      " 29%|███████████▊                             | 121/421 [00:07<00:18, 16.12it/s]\u001b[A\n",
      " 29%|███████████▉                             | 123/421 [00:07<00:18, 15.90it/s]\u001b[A\n",
      " 30%|████████████▏                            | 125/421 [00:07<00:18, 16.21it/s]\u001b[A\n",
      " 30%|████████████▎                            | 127/421 [00:07<00:19, 15.25it/s]\u001b[A\n",
      " 31%|████████████▌                            | 129/421 [00:07<00:18, 16.10it/s]\u001b[A\n",
      " 31%|████████████▊                            | 131/421 [00:07<00:18, 15.88it/s]\u001b[A\n",
      " 32%|████████████▉                            | 133/421 [00:07<00:18, 15.50it/s]\u001b[A\n",
      " 32%|█████████████▏                           | 135/421 [00:08<00:17, 16.15it/s]\u001b[A\n",
      " 33%|█████████████▎                           | 137/421 [00:08<00:18, 15.60it/s]\u001b[A\n",
      " 33%|█████████████▌                           | 139/421 [00:08<00:17, 16.04it/s]\u001b[A\n",
      " 33%|█████████████▋                           | 141/421 [00:08<00:17, 15.72it/s]\u001b[A\n",
      " 34%|█████████████▉                           | 143/421 [00:08<00:18, 15.21it/s]\u001b[A\n",
      " 34%|██████████████                           | 145/421 [00:08<00:17, 15.62it/s]\u001b[A\n",
      " 35%|██████████████▎                          | 147/421 [00:08<00:17, 15.74it/s]\u001b[A\n",
      " 35%|██████████████▌                          | 149/421 [00:08<00:17, 15.42it/s]\u001b[A\n",
      " 36%|██████████████▋                          | 151/421 [00:09<00:17, 15.23it/s]\u001b[A\n",
      " 36%|██████████████▉                          | 153/421 [00:09<00:17, 15.69it/s]\u001b[A\n",
      " 37%|███████████████                          | 155/421 [00:09<00:17, 14.87it/s]\u001b[A\n",
      " 37%|███████████████▎                         | 157/421 [00:09<00:17, 15.02it/s]\u001b[A\n",
      " 38%|███████████████▍                         | 159/421 [00:09<00:16, 15.79it/s]\u001b[A\n",
      " 38%|███████████████▋                         | 161/421 [00:09<00:15, 16.49it/s]\u001b[A\n",
      " 39%|███████████████▊                         | 163/421 [00:09<00:17, 15.02it/s]\u001b[A\n",
      " 39%|████████████████                         | 165/421 [00:09<00:16, 15.44it/s]\u001b[A\n",
      " 40%|████████████████▎                        | 167/421 [00:10<00:16, 15.70it/s]\u001b[A\n",
      " 40%|████████████████▍                        | 169/421 [00:10<00:15, 16.05it/s]\u001b[A\n",
      " 41%|████████████████▋                        | 171/421 [00:10<00:15, 15.97it/s]\u001b[A\n",
      " 41%|████████████████▊                        | 173/421 [00:10<00:15, 15.83it/s]\u001b[A\n",
      " 42%|█████████████████                        | 175/421 [00:10<00:15, 16.29it/s]\u001b[A\n",
      " 42%|█████████████████▏                       | 177/421 [00:10<00:14, 16.70it/s]\u001b[A\n",
      " 43%|█████████████████▍                       | 179/421 [00:10<00:15, 16.00it/s]\u001b[A\n",
      " 43%|█████████████████▋                       | 181/421 [00:10<00:14, 16.52it/s]\u001b[A\n",
      " 44%|█████████████████▉                       | 184/421 [00:11<00:13, 17.60it/s]\u001b[A\n",
      " 44%|██████████████████                       | 186/421 [00:11<00:13, 17.69it/s]\u001b[A\n",
      " 45%|██████████████████▎                      | 188/421 [00:11<00:13, 17.74it/s]\u001b[A\n",
      " 45%|██████████████████▌                      | 190/421 [00:11<00:13, 17.51it/s]\u001b[A\n",
      " 46%|██████████████████▋                      | 192/421 [00:11<00:13, 16.91it/s]\u001b[A\n",
      " 46%|██████████████████▉                      | 194/421 [00:11<00:13, 16.73it/s]\u001b[A\n",
      " 47%|███████████████████                      | 196/421 [00:11<00:12, 17.57it/s]\u001b[A\n",
      " 47%|███████████████████▎                     | 198/421 [00:11<00:12, 17.72it/s]\u001b[A\n",
      " 48%|███████████████████▍                     | 200/421 [00:12<00:13, 16.56it/s]\u001b[A\n",
      " 48%|███████████████████▋                     | 202/421 [00:12<00:13, 16.70it/s]\u001b[A\n",
      " 48%|███████████████████▊                     | 204/421 [00:12<00:13, 16.56it/s]\u001b[A\n",
      " 49%|████████████████████                     | 206/421 [00:12<00:12, 16.90it/s]\u001b[A\n",
      " 49%|████████████████████▎                    | 208/421 [00:12<00:13, 16.19it/s]\u001b[A\n",
      " 50%|████████████████████▍                    | 210/421 [00:12<00:12, 16.45it/s]\u001b[A\n",
      " 50%|████████████████████▋                    | 212/421 [00:12<00:12, 16.73it/s]\u001b[A\n",
      " 51%|████████████████████▊                    | 214/421 [00:12<00:12, 16.63it/s]\u001b[A\n",
      " 52%|█████████████████████▏                   | 217/421 [00:13<00:11, 17.90it/s]\u001b[A\n",
      " 52%|█████████████████████▎                   | 219/421 [00:13<00:11, 17.32it/s]\u001b[A\n",
      " 52%|█████████████████████▌                   | 221/421 [00:13<00:11, 17.17it/s]\u001b[A\n",
      " 53%|█████████████████████▋                   | 223/421 [00:13<00:11, 16.67it/s]\u001b[A\n",
      " 53%|█████████████████████▉                   | 225/421 [00:13<00:11, 16.58it/s]\u001b[A\n",
      " 54%|██████████████████████                   | 227/421 [00:13<00:12, 16.08it/s]\u001b[A\n",
      " 54%|██████████████████████▎                  | 229/421 [00:13<00:12, 15.82it/s]\u001b[A\n",
      " 55%|██████████████████████▍                  | 231/421 [00:13<00:12, 15.46it/s]\u001b[A\n",
      " 55%|██████████████████████▋                  | 233/421 [00:14<00:12, 14.79it/s]\u001b[A\n",
      " 56%|██████████████████████▉                  | 235/421 [00:14<00:12, 15.14it/s]\u001b[A\n",
      " 56%|███████████████████████                  | 237/421 [00:14<00:12, 15.32it/s]\u001b[A\n",
      " 57%|███████████████████████▎                 | 239/421 [00:14<00:12, 15.10it/s]\u001b[A\n",
      " 57%|███████████████████████▍                 | 241/421 [00:14<00:11, 15.22it/s]\u001b[A\n",
      " 58%|███████████████████████▋                 | 243/421 [00:14<00:11, 15.98it/s]\u001b[A\n",
      " 58%|███████████████████████▊                 | 245/421 [00:14<00:10, 16.12it/s]\u001b[A\n",
      " 59%|████████████████████████                 | 247/421 [00:14<00:10, 16.45it/s]\u001b[A\n",
      " 59%|████████████████████████▏                | 249/421 [00:15<00:10, 16.69it/s]\u001b[A\n",
      " 60%|████████████████████████▍                | 251/421 [00:15<00:10, 16.41it/s]\u001b[A\n",
      " 60%|████████████████████████▋                | 253/421 [00:15<00:10, 16.32it/s]\u001b[A\n",
      " 61%|████████████████████████▊                | 255/421 [00:15<00:10, 15.82it/s]\u001b[A\n",
      " 61%|█████████████████████████▏               | 258/421 [00:15<00:09, 17.14it/s]\u001b[A\n",
      " 62%|█████████████████████████▎               | 260/421 [00:15<00:09, 16.77it/s]\u001b[A\n",
      " 62%|█████████████████████████▌               | 262/421 [00:15<00:10, 15.76it/s]\u001b[A\n",
      " 63%|█████████████████████████▋               | 264/421 [00:16<00:10, 15.41it/s]\u001b[A\n",
      " 63%|█████████████████████████▉               | 266/421 [00:16<00:10, 15.38it/s]\u001b[A\n",
      " 64%|██████████████████████████               | 268/421 [00:16<00:10, 14.73it/s]\u001b[A\n",
      " 64%|██████████████████████████▎              | 270/421 [00:16<00:09, 15.46it/s]\u001b[A\n",
      " 65%|██████████████████████████▍              | 272/421 [00:16<00:09, 15.88it/s]\u001b[A\n",
      " 65%|██████████████████████████▋              | 274/421 [00:16<00:09, 16.15it/s]\u001b[A\n",
      " 66%|██████████████████████████▉              | 276/421 [00:16<00:08, 16.99it/s]\u001b[A\n",
      " 66%|███████████████████████████              | 278/421 [00:16<00:08, 17.74it/s]\u001b[A\n",
      " 67%|███████████████████████████▎             | 280/421 [00:16<00:08, 16.68it/s]\u001b[A\n",
      " 67%|███████████████████████████▍             | 282/421 [00:17<00:08, 16.21it/s]\u001b[A\n",
      " 67%|███████████████████████████▋             | 284/421 [00:17<00:08, 15.59it/s]\u001b[A\n",
      " 68%|███████████████████████████▊             | 286/421 [00:17<00:08, 15.50it/s]\u001b[A\n",
      " 68%|████████████████████████████             | 288/421 [00:17<00:08, 16.08it/s]\u001b[A\n",
      " 69%|████████████████████████████▏            | 290/421 [00:17<00:07, 16.84it/s]\u001b[A\n",
      " 69%|████████████████████████████▍            | 292/421 [00:17<00:07, 16.50it/s]\u001b[A\n",
      " 70%|████████████████████████████▋            | 294/421 [00:17<00:07, 16.63it/s]\u001b[A\n",
      " 70%|████████████████████████████▊            | 296/421 [00:17<00:07, 16.59it/s]\u001b[A\n",
      " 71%|█████████████████████████████            | 298/421 [00:18<00:07, 16.81it/s]\u001b[A\n",
      " 71%|█████████████████████████████▏           | 300/421 [00:18<00:07, 16.30it/s]\u001b[A\n",
      " 72%|█████████████████████████████▍           | 302/421 [00:18<00:07, 16.34it/s]\u001b[A\n",
      " 72%|█████████████████████████████▌           | 304/421 [00:18<00:07, 15.78it/s]\u001b[A\n",
      " 73%|█████████████████████████████▊           | 306/421 [00:18<00:07, 15.94it/s]\u001b[A\n",
      " 73%|█████████████████████████████▉           | 308/421 [00:18<00:07, 15.24it/s]\u001b[A\n",
      " 74%|██████████████████████████████▎          | 311/421 [00:18<00:06, 16.62it/s]\u001b[A\n",
      " 74%|██████████████████████████████▍          | 313/421 [00:19<00:06, 16.97it/s]\u001b[A\n",
      " 75%|██████████████████████████████▋          | 315/421 [00:19<00:06, 17.40it/s]\u001b[A\n",
      " 75%|██████████████████████████████▊          | 317/421 [00:19<00:05, 17.97it/s]\u001b[A\n",
      " 76%|███████████████████████████████          | 319/421 [00:19<00:05, 17.95it/s]\u001b[A\n",
      " 76%|███████████████████████████████▎         | 321/421 [00:19<00:05, 17.83it/s]\u001b[A\n",
      " 77%|███████████████████████████████▍         | 323/421 [00:19<00:05, 17.08it/s]\u001b[A\n",
      " 77%|███████████████████████████████▋         | 325/421 [00:19<00:05, 17.33it/s]\u001b[A\n",
      " 78%|███████████████████████████████▊         | 327/421 [00:19<00:05, 17.52it/s]\u001b[A\n",
      " 78%|████████████████████████████████         | 329/421 [00:19<00:05, 16.72it/s]\u001b[A\n",
      " 79%|████████████████████████████████▏        | 331/421 [00:20<00:05, 17.16it/s]\u001b[A\n",
      " 79%|████████████████████████████████▍        | 333/421 [00:20<00:05, 17.07it/s]\u001b[A\n",
      " 80%|████████████████████████████████▌        | 335/421 [00:20<00:04, 17.24it/s]\u001b[A\n",
      " 80%|████████████████████████████████▊        | 337/421 [00:20<00:05, 16.72it/s]\u001b[A\n",
      " 81%|█████████████████████████████████        | 339/421 [00:20<00:04, 16.50it/s]\u001b[A\n",
      " 81%|█████████████████████████████████▏       | 341/421 [00:20<00:04, 16.29it/s]\u001b[A\n",
      " 81%|█████████████████████████████████▍       | 343/421 [00:20<00:04, 16.01it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▌       | 345/421 [00:20<00:04, 16.33it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▊       | 347/421 [00:21<00:04, 16.16it/s]\u001b[A\n",
      " 83%|█████████████████████████████████▉       | 349/421 [00:21<00:04, 15.93it/s]\u001b[A\n",
      " 83%|██████████████████████████████████▏      | 351/421 [00:21<00:04, 15.69it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▍      | 353/421 [00:21<00:04, 14.58it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▌      | 355/421 [00:21<00:04, 14.11it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▊      | 357/421 [00:21<00:04, 13.44it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▉      | 359/421 [00:21<00:04, 13.77it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▏     | 361/421 [00:21<00:04, 14.92it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▎     | 363/421 [00:22<00:03, 15.47it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▌     | 365/421 [00:22<00:03, 16.21it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▋     | 367/421 [00:22<00:03, 15.28it/s]\u001b[A\n",
      " 88%|███████████████████████████████████▉     | 369/421 [00:22<00:03, 15.87it/s]\u001b[A\n",
      " 88%|████████████████████████████████████▏    | 371/421 [00:22<00:03, 16.44it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▎    | 373/421 [00:22<00:02, 16.94it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▌    | 375/421 [00:22<00:02, 16.75it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▋    | 377/421 [00:22<00:02, 16.51it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▉    | 379/421 [00:23<00:02, 17.16it/s]\u001b[A\n",
      " 90%|█████████████████████████████████████    | 381/421 [00:23<00:02, 16.66it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▎   | 383/421 [00:23<00:02, 15.46it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▍   | 385/421 [00:23<00:02, 15.23it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▋   | 387/421 [00:23<00:02, 15.54it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▉   | 389/421 [00:23<00:01, 16.04it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████   | 391/421 [00:23<00:01, 15.75it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████▎  | 393/421 [00:23<00:01, 15.38it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▍  | 395/421 [00:24<00:01, 15.92it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▋  | 397/421 [00:24<00:01, 16.42it/s]\u001b[A\n",
      " 95%|██████████████████████████████████████▊  | 399/421 [00:24<00:01, 16.12it/s]\u001b[A\n",
      " 95%|███████████████████████████████████████  | 401/421 [00:24<00:01, 16.51it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▏ | 403/421 [00:24<00:01, 16.77it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▍ | 405/421 [00:24<00:00, 16.91it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▋ | 407/421 [00:24<00:00, 17.48it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▊ | 409/421 [00:24<00:00, 17.52it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████ | 411/421 [00:25<00:00, 17.93it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████▎| 414/421 [00:25<00:00, 18.24it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▌| 416/421 [00:25<00:00, 16.92it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▋| 418/421 [00:25<00:00, 17.19it/s]\u001b[A\n",
      "                                                                                \u001b[A\n",
      " 47%|██████████████████▎                    | 1500/3200 [59:43<52:27,  1.85s/it]\n",
      "100%|█████████████████████████████████████████| 421/421 [00:25<00:00, 17.37it/s]\u001b[A\n",
      "                                                                                \u001b[ASaving model checkpoint to ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1500\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1500/config.json\n",
      "Model weights saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1500/pytorch_model.bin\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1500/preprocessor_config.json\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      "Deleting older checkpoint [wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-500] due to args.save_total_limit\n",
      " 62%|███████████████████████              | 1992/3200 [1:19:54<47:32,  2.36s/it]Deleting older checkpoint [wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1000] due to args.save_total_limit\n",
      " 78%|████████████████████████████▉        | 2500/3200 [1:40:57<27:53,  2.39s/it]The following columns in the evaluation set  don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
      "***** Running Evaluation *****\n",
      "  Num examples = 421\n",
      "  Batch size = 1\n",
      "\n",
      "  0%|                                                   | 0/421 [00:00<?, ?it/s]\u001b[A\n",
      "  1%|▎                                          | 3/421 [00:00<00:22, 18.47it/s]\u001b[A\n",
      "  1%|▌                                          | 5/421 [00:00<00:27, 14.97it/s]\u001b[A\n",
      "  2%|▋                                          | 7/421 [00:00<00:31, 13.32it/s]\u001b[A\n",
      "  2%|▉                                          | 9/421 [00:00<00:32, 12.68it/s]\u001b[A\n",
      "  3%|█                                         | 11/421 [00:00<00:30, 13.46it/s]\u001b[A\n",
      "  3%|█▎                                        | 13/421 [00:00<00:31, 13.15it/s]\u001b[A\n",
      "  4%|█▍                                        | 15/421 [00:01<00:30, 13.39it/s]\u001b[A\n",
      "  4%|█▋                                        | 17/421 [00:01<00:28, 14.04it/s]\u001b[A\n",
      "  5%|█▉                                        | 19/421 [00:01<00:27, 14.63it/s]\u001b[A\n",
      "  5%|██                                        | 21/421 [00:01<00:26, 15.26it/s]\u001b[A\n",
      "  5%|██▎                                       | 23/421 [00:01<00:26, 15.12it/s]\u001b[A\n",
      "  6%|██▍                                       | 25/421 [00:01<00:26, 15.15it/s]\u001b[A\n",
      "  6%|██▋                                       | 27/421 [00:01<00:26, 15.01it/s]\u001b[A\n",
      "  7%|██▉                                       | 29/421 [00:01<00:25, 15.47it/s]\u001b[A\n",
      "  7%|███                                       | 31/421 [00:02<00:25, 15.04it/s]\u001b[A\n",
      "  8%|███▍                                      | 34/421 [00:02<00:24, 15.90it/s]\u001b[A\n",
      "  9%|███▌                                      | 36/421 [00:02<00:23, 16.11it/s]\u001b[A\n",
      "  9%|███▊                                      | 38/421 [00:02<00:23, 16.20it/s]\u001b[A\n",
      " 10%|███▉                                      | 40/421 [00:02<00:23, 16.32it/s]\u001b[A\n",
      " 10%|████▏                                     | 42/421 [00:02<00:23, 16.24it/s]\u001b[A\n",
      " 10%|████▍                                     | 44/421 [00:02<00:23, 16.29it/s]\u001b[A\n",
      " 11%|████▌                                     | 46/421 [00:03<00:22, 16.44it/s]\u001b[A\n",
      " 11%|████▊                                     | 48/421 [00:03<00:22, 16.91it/s]\u001b[A\n",
      " 12%|█████                                     | 51/421 [00:03<00:19, 18.59it/s]\u001b[A\n",
      " 13%|█████▎                                    | 53/421 [00:03<00:19, 18.89it/s]\u001b[A\n",
      " 13%|█████▍                                    | 55/421 [00:03<00:20, 18.20it/s]\u001b[A\n",
      " 14%|█████▋                                    | 57/421 [00:03<00:20, 17.36it/s]\u001b[A\n",
      " 14%|█████▉                                    | 60/421 [00:03<00:19, 18.35it/s]\u001b[A\n",
      " 15%|██████▏                                   | 62/421 [00:03<00:19, 18.46it/s]\u001b[A\n",
      " 15%|██████▍                                   | 64/421 [00:03<00:19, 18.21it/s]\u001b[A\n",
      " 16%|██████▌                                   | 66/421 [00:04<00:20, 17.52it/s]\u001b[A\n",
      " 16%|██████▊                                   | 68/421 [00:04<00:20, 17.22it/s]\u001b[A\n",
      " 17%|██████▉                                   | 70/421 [00:04<00:20, 17.41it/s]\u001b[A\n",
      " 17%|███████▏                                  | 72/421 [00:04<00:19, 17.56it/s]\u001b[A\n",
      " 18%|███████▍                                  | 74/421 [00:04<00:19, 17.70it/s]\u001b[A\n",
      " 18%|███████▋                                  | 77/421 [00:04<00:18, 18.22it/s]\u001b[A\n",
      " 19%|███████▉                                  | 79/421 [00:04<00:19, 17.59it/s]\u001b[A\n",
      " 19%|████████                                  | 81/421 [00:04<00:19, 17.13it/s]\u001b[A\n",
      " 20%|████████▎                                 | 83/421 [00:05<00:19, 17.12it/s]\u001b[A\n",
      " 20%|████████▍                                 | 85/421 [00:05<00:19, 17.56it/s]\u001b[A\n",
      " 21%|████████▋                                 | 87/421 [00:05<00:20, 16.68it/s]\u001b[A\n",
      " 21%|████████▉                                 | 89/421 [00:05<00:19, 16.75it/s]\u001b[A\n",
      " 22%|█████████                                 | 91/421 [00:05<00:19, 16.92it/s]\u001b[A\n",
      " 22%|█████████▎                                | 93/421 [00:05<00:21, 15.12it/s]\u001b[A\n",
      " 23%|█████████▍                                | 95/421 [00:05<00:20, 15.55it/s]\u001b[A\n",
      " 23%|█████████▋                                | 97/421 [00:06<00:21, 15.19it/s]\u001b[A\n",
      " 24%|█████████▉                                | 99/421 [00:06<00:21, 15.21it/s]\u001b[A\n",
      " 24%|█████████▊                               | 101/421 [00:06<00:21, 15.13it/s]\u001b[A\n",
      " 24%|██████████                               | 103/421 [00:06<00:20, 15.60it/s]\u001b[A\n",
      " 25%|██████████▏                              | 105/421 [00:06<00:20, 15.42it/s]\u001b[A\n",
      " 25%|██████████▍                              | 107/421 [00:06<00:19, 16.47it/s]\u001b[A\n",
      " 26%|██████████▌                              | 109/421 [00:06<00:19, 16.21it/s]\u001b[A\n",
      " 26%|██████████▊                              | 111/421 [00:06<00:19, 15.66it/s]\u001b[A\n",
      " 27%|███████████                              | 113/421 [00:07<00:20, 14.70it/s]\u001b[A\n",
      " 27%|███████████▏                             | 115/421 [00:07<00:21, 14.49it/s]\u001b[A\n",
      " 28%|███████████▍                             | 117/421 [00:07<00:19, 15.48it/s]\u001b[A\n",
      " 28%|███████████▌                             | 119/421 [00:07<00:19, 15.68it/s]\u001b[A\n",
      " 29%|███████████▊                             | 121/421 [00:07<00:18, 16.16it/s]\u001b[A\n",
      " 29%|███████████▉                             | 123/421 [00:07<00:18, 15.83it/s]\u001b[A\n",
      " 30%|████████████▏                            | 125/421 [00:07<00:18, 16.24it/s]\u001b[A\n",
      " 30%|████████████▎                            | 127/421 [00:07<00:18, 15.69it/s]\u001b[A\n",
      " 31%|████████████▌                            | 129/421 [00:08<00:17, 16.43it/s]\u001b[A\n",
      " 31%|████████████▊                            | 131/421 [00:08<00:17, 16.22it/s]\u001b[A\n",
      " 32%|████████████▉                            | 133/421 [00:08<00:18, 15.54it/s]\u001b[A\n",
      " 32%|█████████████▏                           | 135/421 [00:08<00:17, 16.26it/s]\u001b[A\n",
      " 33%|█████████████▎                           | 137/421 [00:08<00:18, 15.72it/s]\u001b[A\n",
      " 33%|█████████████▌                           | 139/421 [00:08<00:17, 16.05it/s]\u001b[A\n",
      " 33%|█████████████▋                           | 141/421 [00:08<00:17, 15.63it/s]\u001b[A\n",
      " 34%|█████████████▉                           | 143/421 [00:08<00:18, 15.26it/s]\u001b[A\n",
      " 34%|██████████████                           | 145/421 [00:09<00:17, 16.05it/s]\u001b[A\n",
      " 35%|██████████████▎                          | 147/421 [00:09<00:17, 16.06it/s]\u001b[A\n",
      " 35%|██████████████▌                          | 149/421 [00:09<00:17, 15.59it/s]\u001b[A\n",
      " 36%|██████████████▋                          | 151/421 [00:09<00:17, 15.19it/s]\u001b[A\n",
      " 36%|██████████████▉                          | 153/421 [00:09<00:17, 15.64it/s]\u001b[A\n",
      " 37%|███████████████                          | 155/421 [00:09<00:17, 14.84it/s]\u001b[A\n",
      " 37%|███████████████▎                         | 157/421 [00:09<00:17, 15.10it/s]\u001b[A\n",
      " 38%|███████████████▍                         | 159/421 [00:09<00:16, 15.89it/s]\u001b[A\n",
      " 38%|███████████████▋                         | 161/421 [00:10<00:15, 16.62it/s]\u001b[A\n",
      " 39%|███████████████▊                         | 163/421 [00:10<00:17, 14.93it/s]\u001b[A\n",
      " 39%|████████████████                         | 165/421 [00:10<00:16, 15.23it/s]\u001b[A\n",
      " 40%|████████████████▎                        | 167/421 [00:10<00:16, 15.36it/s]\u001b[A\n",
      " 40%|████████████████▍                        | 169/421 [00:10<00:16, 15.28it/s]\u001b[A\n",
      " 41%|████████████████▋                        | 171/421 [00:10<00:16, 14.98it/s]\u001b[A\n",
      " 41%|████████████████▊                        | 173/421 [00:10<00:16, 14.90it/s]\u001b[A\n",
      " 42%|█████████████████                        | 175/421 [00:10<00:15, 15.65it/s]\u001b[A\n",
      " 42%|█████████████████▏                       | 177/421 [00:11<00:15, 16.09it/s]\u001b[A\n",
      " 43%|█████████████████▍                       | 179/421 [00:11<00:15, 15.61it/s]\u001b[A\n",
      " 43%|█████████████████▋                       | 181/421 [00:11<00:14, 16.21it/s]\u001b[A\n",
      " 44%|█████████████████▉                       | 184/421 [00:11<00:13, 17.30it/s]\u001b[A\n",
      " 44%|██████████████████                       | 186/421 [00:11<00:13, 17.32it/s]\u001b[A\n",
      " 45%|██████████████████▎                      | 188/421 [00:11<00:13, 16.79it/s]\u001b[A\n",
      " 45%|██████████████████▌                      | 190/421 [00:11<00:13, 16.82it/s]\u001b[A\n",
      " 46%|██████████████████▋                      | 192/421 [00:12<00:14, 16.02it/s]\u001b[A\n",
      " 46%|██████████████████▉                      | 194/421 [00:12<00:15, 14.81it/s]\u001b[A\n",
      " 47%|███████████████████                      | 196/421 [00:12<00:14, 15.38it/s]\u001b[A\n",
      " 47%|███████████████████▎                     | 198/421 [00:12<00:13, 16.11it/s]\u001b[A\n",
      " 48%|███████████████████▍                     | 200/421 [00:12<00:14, 15.37it/s]\u001b[A\n",
      " 48%|███████████████████▋                     | 202/421 [00:12<00:13, 15.73it/s]\u001b[A\n",
      " 48%|███████████████████▊                     | 204/421 [00:12<00:13, 15.97it/s]\u001b[A\n",
      " 49%|████████████████████                     | 206/421 [00:12<00:13, 16.44it/s]\u001b[A\n",
      " 49%|████████████████████▎                    | 208/421 [00:13<00:13, 15.86it/s]\u001b[A\n",
      " 50%|████████████████████▍                    | 210/421 [00:13<00:12, 16.35it/s]\u001b[A\n",
      " 50%|████████████████████▋                    | 212/421 [00:13<00:12, 16.67it/s]\u001b[A\n",
      " 51%|████████████████████▊                    | 214/421 [00:13<00:12, 16.50it/s]\u001b[A\n",
      " 51%|█████████████████████                    | 216/421 [00:13<00:11, 17.36it/s]\u001b[A\n",
      " 52%|█████████████████████▏                   | 218/421 [00:13<00:11, 17.14it/s]\u001b[A\n",
      " 52%|█████████████████████▍                   | 220/421 [00:13<00:11, 16.98it/s]\u001b[A\n",
      " 53%|█████████████████████▌                   | 222/421 [00:13<00:12, 16.54it/s]\u001b[A\n",
      " 53%|█████████████████████▊                   | 224/421 [00:13<00:12, 16.12it/s]\u001b[A\n",
      " 54%|██████████████████████                   | 226/421 [00:14<00:12, 15.83it/s]\u001b[A\n",
      " 54%|██████████████████████▏                  | 228/421 [00:14<00:12, 16.06it/s]\u001b[A\n",
      " 55%|██████████████████████▍                  | 230/421 [00:14<00:12, 15.75it/s]\u001b[A\n",
      " 55%|██████████████████████▌                  | 232/421 [00:14<00:12, 15.07it/s]\u001b[A\n",
      " 56%|██████████████████████▊                  | 234/421 [00:14<00:12, 15.01it/s]\u001b[A\n",
      " 56%|██████████████████████▉                  | 236/421 [00:14<00:11, 15.57it/s]\u001b[A\n",
      " 57%|███████████████████████▏                 | 238/421 [00:14<00:11, 15.26it/s]\u001b[A\n",
      " 57%|███████████████████████▎                 | 240/421 [00:15<00:12, 15.05it/s]\u001b[A\n",
      " 57%|███████████████████████▌                 | 242/421 [00:15<00:11, 15.50it/s]\u001b[A\n",
      " 58%|███████████████████████▊                 | 244/421 [00:15<00:11, 15.94it/s]\u001b[A\n",
      " 58%|███████████████████████▉                 | 246/421 [00:15<00:10, 15.97it/s]\u001b[A\n",
      " 59%|████████████████████████▏                | 248/421 [00:15<00:11, 15.51it/s]\u001b[A\n",
      " 59%|████████████████████████▎                | 250/421 [00:15<00:10, 15.65it/s]\u001b[A\n",
      " 60%|████████████████████████▌                | 252/421 [00:15<00:10, 16.07it/s]\u001b[A\n",
      " 60%|████████████████████████▋                | 254/421 [00:15<00:10, 15.85it/s]\u001b[A\n",
      " 61%|████████████████████████▉                | 256/421 [00:16<00:10, 16.14it/s]\u001b[A\n",
      " 61%|█████████████████████████▏               | 258/421 [00:16<00:09, 16.75it/s]\u001b[A\n",
      " 62%|█████████████████████████▎               | 260/421 [00:16<00:09, 16.46it/s]\u001b[A\n",
      " 62%|█████████████████████████▌               | 262/421 [00:16<00:10, 15.80it/s]\u001b[A\n",
      " 63%|█████████████████████████▋               | 264/421 [00:16<00:10, 15.17it/s]\u001b[A\n",
      " 63%|█████████████████████████▉               | 266/421 [00:16<00:10, 14.87it/s]\u001b[A\n",
      " 64%|██████████████████████████               | 268/421 [00:16<00:10, 14.60it/s]\u001b[A\n",
      " 64%|██████████████████████████▎              | 270/421 [00:16<00:09, 15.49it/s]\u001b[A\n",
      " 65%|██████████████████████████▍              | 272/421 [00:17<00:09, 15.86it/s]\u001b[A\n",
      " 65%|██████████████████████████▋              | 274/421 [00:17<00:09, 16.25it/s]\u001b[A\n",
      " 66%|██████████████████████████▉              | 277/421 [00:17<00:08, 17.90it/s]\u001b[A\n",
      " 66%|███████████████████████████▏             | 279/421 [00:17<00:07, 17.77it/s]\u001b[A\n",
      " 67%|███████████████████████████▎             | 281/421 [00:17<00:08, 16.64it/s]\u001b[A\n",
      " 67%|███████████████████████████▌             | 283/421 [00:17<00:08, 16.18it/s]\u001b[A\n",
      " 68%|███████████████████████████▊             | 285/421 [00:17<00:09, 15.07it/s]\u001b[A\n",
      " 68%|████████████████████████████             | 288/421 [00:18<00:08, 16.27it/s]\u001b[A\n",
      " 69%|████████████████████████████▏            | 290/421 [00:18<00:07, 16.83it/s]\u001b[A\n",
      " 69%|████████████████████████████▍            | 292/421 [00:18<00:07, 16.44it/s]\u001b[A\n",
      " 70%|████████████████████████████▋            | 294/421 [00:18<00:07, 16.56it/s]\u001b[A\n",
      " 70%|████████████████████████████▊            | 296/421 [00:18<00:07, 16.16it/s]\u001b[A\n",
      " 71%|█████████████████████████████            | 298/421 [00:18<00:07, 16.17it/s]\u001b[A\n",
      " 71%|█████████████████████████████▏           | 300/421 [00:18<00:07, 15.85it/s]\u001b[A\n",
      " 72%|█████████████████████████████▍           | 302/421 [00:18<00:07, 15.96it/s]\u001b[A\n",
      " 72%|█████████████████████████████▌           | 304/421 [00:19<00:07, 15.61it/s]\u001b[A\n",
      " 73%|█████████████████████████████▊           | 306/421 [00:19<00:07, 15.93it/s]\u001b[A\n",
      " 73%|█████████████████████████████▉           | 308/421 [00:19<00:07, 15.33it/s]\u001b[A\n",
      " 74%|██████████████████████████████▎          | 311/421 [00:19<00:06, 16.79it/s]\u001b[A\n",
      " 74%|██████████████████████████████▍          | 313/421 [00:19<00:06, 16.89it/s]\u001b[A\n",
      " 75%|██████████████████████████████▋          | 315/421 [00:19<00:06, 17.45it/s]\u001b[A\n",
      " 75%|██████████████████████████████▊          | 317/421 [00:19<00:05, 17.58it/s]\u001b[A\n",
      " 76%|███████████████████████████████          | 319/421 [00:19<00:05, 17.63it/s]\u001b[A\n",
      " 76%|███████████████████████████████▎         | 321/421 [00:20<00:05, 17.75it/s]\u001b[A\n",
      " 77%|███████████████████████████████▍         | 323/421 [00:20<00:05, 16.99it/s]\u001b[A\n",
      " 77%|███████████████████████████████▋         | 325/421 [00:20<00:05, 17.12it/s]\u001b[A\n",
      " 78%|███████████████████████████████▊         | 327/421 [00:20<00:05, 17.40it/s]\u001b[A\n",
      " 78%|████████████████████████████████         | 329/421 [00:20<00:05, 16.34it/s]\u001b[A\n",
      " 79%|████████████████████████████████▏        | 331/421 [00:20<00:05, 16.46it/s]\u001b[A\n",
      " 79%|████████████████████████████████▍        | 333/421 [00:20<00:05, 16.44it/s]\u001b[A\n",
      " 80%|████████████████████████████████▌        | 335/421 [00:20<00:05, 16.68it/s]\u001b[A\n",
      " 80%|████████████████████████████████▊        | 337/421 [00:20<00:05, 16.44it/s]\u001b[A\n",
      " 81%|█████████████████████████████████        | 339/421 [00:21<00:04, 16.41it/s]\u001b[A\n",
      " 81%|█████████████████████████████████▏       | 341/421 [00:21<00:04, 16.14it/s]\u001b[A\n",
      " 81%|█████████████████████████████████▍       | 343/421 [00:21<00:04, 16.01it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▌       | 345/421 [00:21<00:04, 16.19it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▊       | 347/421 [00:21<00:04, 15.94it/s]\u001b[A\n",
      " 83%|█████████████████████████████████▉       | 349/421 [00:21<00:04, 15.50it/s]\u001b[A\n",
      " 83%|██████████████████████████████████▏      | 351/421 [00:21<00:04, 15.12it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▍      | 353/421 [00:22<00:04, 13.69it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▌      | 355/421 [00:22<00:04, 13.41it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▊      | 357/421 [00:22<00:04, 13.05it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▉      | 359/421 [00:22<00:04, 13.36it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▏     | 361/421 [00:22<00:04, 14.46it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▎     | 363/421 [00:22<00:03, 15.06it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▌     | 365/421 [00:22<00:03, 15.50it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▋     | 367/421 [00:23<00:03, 15.03it/s]\u001b[A\n",
      " 88%|███████████████████████████████████▉     | 369/421 [00:23<00:03, 15.57it/s]\u001b[A\n",
      " 88%|████████████████████████████████████▏    | 371/421 [00:23<00:03, 15.96it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▎    | 373/421 [00:23<00:02, 16.52it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▌    | 375/421 [00:23<00:02, 16.23it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▋    | 377/421 [00:23<00:02, 15.73it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▉    | 379/421 [00:23<00:02, 16.49it/s]\u001b[A\n",
      " 90%|█████████████████████████████████████    | 381/421 [00:23<00:02, 16.00it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▎   | 383/421 [00:24<00:02, 14.85it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▍   | 385/421 [00:24<00:02, 14.68it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▋   | 387/421 [00:24<00:02, 15.07it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▉   | 389/421 [00:24<00:02, 15.56it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████   | 391/421 [00:24<00:01, 15.19it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████▎  | 393/421 [00:24<00:01, 14.91it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▍  | 395/421 [00:24<00:01, 15.37it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▋  | 397/421 [00:24<00:01, 16.00it/s]\u001b[A\n",
      " 95%|██████████████████████████████████████▊  | 399/421 [00:25<00:01, 16.01it/s]\u001b[A\n",
      " 95%|███████████████████████████████████████  | 401/421 [00:25<00:01, 16.63it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▏ | 403/421 [00:25<00:01, 16.94it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▍ | 405/421 [00:25<00:00, 16.94it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▋ | 407/421 [00:25<00:00, 17.34it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▊ | 409/421 [00:25<00:00, 17.21it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████ | 411/421 [00:25<00:00, 17.65it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████▎| 414/421 [00:25<00:00, 17.90it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▌| 416/421 [00:26<00:00, 16.69it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▋| 418/421 [00:26<00:00, 16.98it/s]\u001b[A\n",
      "                                                                                \u001b[A\n",
      " 78%|████████████████████████████▉        | 2500/3200 [1:41:23<27:53,  2.39s/it]\n",
      "100%|█████████████████████████████████████████| 421/421 [00:26<00:00, 17.07it/s]\u001b[A\n",
      "                                                                                \u001b[ASaving model checkpoint to ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-2500\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-2500/config.json\n",
      "Model weights saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-2500/pytorch_model.bin\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-2500/preprocessor_config.json\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      "Deleting older checkpoint [wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-1500] due to args.save_total_limit\n",
      " 94%|██████████████████████████████████▋  | 3000/3200 [2:01:43<08:04,  2.42s/it]The following columns in the evaluation set  don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
      "***** Running Evaluation *****\n",
      "  Num examples = 421\n",
      "  Batch size = 1\n",
      "\n",
      "  0%|                                                   | 0/421 [00:00<?, ?it/s]\u001b[A\n",
      "  0%|▏                                          | 2/421 [00:00<00:21, 19.56it/s]\u001b[A\n",
      "  1%|▍                                          | 4/421 [00:00<00:25, 16.52it/s]\u001b[A\n",
      "  1%|▌                                          | 6/421 [00:00<00:26, 15.87it/s]\u001b[A\n",
      "  2%|▊                                          | 8/421 [00:00<00:27, 14.95it/s]\u001b[A\n",
      "  2%|▉                                         | 10/421 [00:00<00:26, 15.41it/s]\u001b[A\n",
      "  3%|█▏                                        | 12/421 [00:00<00:25, 16.09it/s]\u001b[A\n",
      "  3%|█▍                                        | 14/421 [00:00<00:25, 15.98it/s]\u001b[A\n",
      "  4%|█▌                                        | 16/421 [00:00<00:24, 16.21it/s]\u001b[A\n",
      "  5%|█▉                                        | 19/421 [00:01<00:23, 17.36it/s]\u001b[A\n",
      "  5%|██                                        | 21/421 [00:01<00:22, 17.80it/s]\u001b[A\n",
      "  5%|██▎                                       | 23/421 [00:01<00:22, 17.68it/s]\u001b[A\n",
      "  6%|██▍                                       | 25/421 [00:01<00:22, 17.89it/s]\u001b[A\n",
      "  6%|██▋                                       | 27/421 [00:01<00:21, 17.97it/s]\u001b[A\n",
      "  7%|██▉                                       | 29/421 [00:01<00:21, 18.47it/s]\u001b[A\n",
      "  7%|███                                       | 31/421 [00:01<00:23, 16.89it/s]\u001b[A\n",
      "  8%|███▍                                      | 34/421 [00:02<00:23, 16.81it/s]\u001b[A\n",
      "  9%|███▌                                      | 36/421 [00:02<00:23, 16.61it/s]\u001b[A\n",
      "  9%|███▊                                      | 38/421 [00:02<00:23, 16.08it/s]\u001b[A\n",
      " 10%|███▉                                      | 40/421 [00:02<00:23, 16.07it/s]\u001b[A\n",
      " 10%|████▏                                     | 42/421 [00:02<00:23, 15.99it/s]\u001b[A\n",
      " 10%|████▍                                     | 44/421 [00:02<00:23, 16.02it/s]\u001b[A\n",
      " 11%|████▌                                     | 46/421 [00:02<00:24, 15.55it/s]\u001b[A\n",
      " 11%|████▊                                     | 48/421 [00:02<00:23, 15.84it/s]\u001b[A\n",
      " 12%|█████                                     | 51/421 [00:03<00:21, 17.56it/s]\u001b[A\n",
      " 13%|█████▎                                    | 53/421 [00:03<00:20, 18.07it/s]\u001b[A\n",
      " 13%|█████▍                                    | 55/421 [00:03<00:20, 17.56it/s]\u001b[A\n",
      " 14%|█████▋                                    | 57/421 [00:03<00:21, 16.90it/s]\u001b[A\n",
      " 14%|█████▉                                    | 60/421 [00:03<00:20, 17.81it/s]\u001b[A\n",
      " 15%|██████▏                                   | 62/421 [00:03<00:20, 17.75it/s]\u001b[A\n",
      " 15%|██████▍                                   | 64/421 [00:03<00:20, 17.73it/s]\u001b[A\n",
      " 16%|██████▌                                   | 66/421 [00:03<00:20, 17.44it/s]\u001b[A\n",
      " 16%|██████▊                                   | 68/421 [00:04<00:20, 17.06it/s]\u001b[A\n",
      " 17%|██████▉                                   | 70/421 [00:04<00:20, 17.47it/s]\u001b[A\n",
      " 17%|███████▏                                  | 72/421 [00:04<00:20, 17.40it/s]\u001b[A\n",
      " 18%|███████▍                                  | 74/421 [00:04<00:20, 17.20it/s]\u001b[A\n",
      " 18%|███████▋                                  | 77/421 [00:04<00:18, 18.12it/s]\u001b[A\n",
      " 19%|███████▉                                  | 79/421 [00:04<00:19, 17.24it/s]\u001b[A\n",
      " 19%|████████                                  | 81/421 [00:04<00:20, 16.91it/s]\u001b[A\n",
      " 20%|████████▎                                 | 83/421 [00:04<00:20, 16.88it/s]\u001b[A\n",
      " 20%|████████▍                                 | 85/421 [00:05<00:19, 17.43it/s]\u001b[A\n",
      " 21%|████████▋                                 | 87/421 [00:05<00:20, 16.51it/s]\u001b[A\n",
      " 21%|████████▉                                 | 89/421 [00:05<00:19, 16.99it/s]\u001b[A\n",
      " 22%|█████████                                 | 91/421 [00:05<00:19, 17.22it/s]\u001b[A\n",
      " 22%|█████████▎                                | 93/421 [00:05<00:20, 16.00it/s]\u001b[A\n",
      " 23%|█████████▍                                | 95/421 [00:05<00:19, 16.41it/s]\u001b[A\n",
      " 23%|█████████▋                                | 97/421 [00:05<00:19, 16.60it/s]\u001b[A\n",
      " 24%|█████████▉                                | 99/421 [00:05<00:20, 16.04it/s]\u001b[A\n",
      " 24%|█████████▊                               | 101/421 [00:06<00:20, 15.69it/s]\u001b[A\n",
      " 24%|██████████                               | 103/421 [00:06<00:19, 16.02it/s]\u001b[A\n",
      " 25%|██████████▏                              | 105/421 [00:06<00:20, 15.50it/s]\u001b[A\n",
      " 25%|██████████▍                              | 107/421 [00:06<00:19, 16.43it/s]\u001b[A\n",
      " 26%|██████████▌                              | 109/421 [00:06<00:19, 16.28it/s]\u001b[A\n",
      " 26%|██████████▊                              | 111/421 [00:06<00:19, 15.54it/s]\u001b[A\n",
      " 27%|███████████                              | 113/421 [00:06<00:20, 14.69it/s]\u001b[A\n",
      " 27%|███████████▏                             | 115/421 [00:06<00:21, 14.07it/s]\u001b[A\n",
      " 28%|███████████▍                             | 117/421 [00:07<00:20, 15.07it/s]\u001b[A\n",
      " 28%|███████████▌                             | 119/421 [00:07<00:19, 15.26it/s]\u001b[A\n",
      " 29%|███████████▊                             | 121/421 [00:07<00:19, 15.51it/s]\u001b[A\n",
      " 29%|███████████▉                             | 123/421 [00:07<00:19, 15.31it/s]\u001b[A\n",
      " 30%|████████████▏                            | 125/421 [00:07<00:18, 15.80it/s]\u001b[A\n",
      " 30%|████████████▎                            | 127/421 [00:07<00:19, 15.36it/s]\u001b[A\n",
      " 31%|████████████▌                            | 129/421 [00:07<00:18, 16.21it/s]\u001b[A\n",
      " 31%|████████████▊                            | 131/421 [00:07<00:18, 15.85it/s]\u001b[A\n",
      " 32%|████████████▉                            | 133/421 [00:08<00:18, 15.50it/s]\u001b[A\n",
      " 32%|█████████████▏                           | 135/421 [00:08<00:18, 15.82it/s]\u001b[A\n",
      " 33%|█████████████▎                           | 137/421 [00:08<00:18, 15.19it/s]\u001b[A\n",
      " 33%|█████████████▌                           | 139/421 [00:08<00:18, 15.64it/s]\u001b[A\n",
      " 33%|█████████████▋                           | 141/421 [00:08<00:18, 15.50it/s]\u001b[A\n",
      " 34%|█████████████▉                           | 143/421 [00:08<00:18, 15.27it/s]\u001b[A\n",
      " 34%|██████████████                           | 145/421 [00:08<00:17, 15.92it/s]\u001b[A\n",
      " 35%|██████████████▎                          | 147/421 [00:08<00:17, 15.69it/s]\u001b[A\n",
      " 35%|██████████████▌                          | 149/421 [00:09<00:17, 15.41it/s]\u001b[A\n",
      " 36%|██████████████▋                          | 151/421 [00:09<00:17, 15.19it/s]\u001b[A\n",
      " 36%|██████████████▉                          | 153/421 [00:09<00:17, 15.60it/s]\u001b[A\n",
      " 37%|███████████████                          | 155/421 [00:09<00:17, 14.86it/s]\u001b[A\n",
      " 37%|███████████████▎                         | 157/421 [00:09<00:17, 15.04it/s]\u001b[A\n",
      " 38%|███████████████▍                         | 159/421 [00:09<00:16, 15.76it/s]\u001b[A\n",
      " 38%|███████████████▋                         | 161/421 [00:09<00:15, 16.34it/s]\u001b[A\n",
      " 39%|███████████████▊                         | 163/421 [00:10<00:17, 14.90it/s]\u001b[A\n",
      " 39%|████████████████                         | 165/421 [00:10<00:16, 15.27it/s]\u001b[A\n",
      " 40%|████████████████▎                        | 167/421 [00:10<00:16, 15.56it/s]\u001b[A\n",
      " 40%|████████████████▍                        | 169/421 [00:10<00:15, 15.94it/s]\u001b[A\n",
      " 41%|████████████████▋                        | 171/421 [00:10<00:15, 16.10it/s]\u001b[A\n",
      " 41%|████████████████▊                        | 173/421 [00:10<00:15, 16.10it/s]\u001b[A\n",
      " 42%|█████████████████                        | 175/421 [00:10<00:15, 16.28it/s]\u001b[A\n",
      " 42%|█████████████████▏                       | 177/421 [00:10<00:14, 16.60it/s]\u001b[A\n",
      " 43%|█████████████████▍                       | 179/421 [00:11<00:15, 15.96it/s]\u001b[A\n",
      " 43%|█████████████████▋                       | 181/421 [00:11<00:14, 16.21it/s]\u001b[A\n",
      " 44%|█████████████████▉                       | 184/421 [00:11<00:13, 17.28it/s]\u001b[A\n",
      " 44%|██████████████████                       | 186/421 [00:11<00:13, 17.24it/s]\u001b[A\n",
      " 45%|██████████████████▎                      | 188/421 [00:11<00:13, 17.05it/s]\u001b[A\n",
      " 45%|██████████████████▌                      | 190/421 [00:11<00:13, 16.77it/s]\u001b[A\n",
      " 46%|██████████████████▋                      | 192/421 [00:11<00:14, 16.35it/s]\u001b[A\n",
      " 46%|██████████████████▉                      | 194/421 [00:11<00:14, 16.21it/s]\u001b[A\n",
      " 47%|███████████████████                      | 196/421 [00:11<00:13, 17.14it/s]\u001b[A\n",
      " 47%|███████████████████▎                     | 198/421 [00:12<00:12, 17.46it/s]\u001b[A\n",
      " 48%|███████████████████▍                     | 200/421 [00:12<00:13, 16.36it/s]\u001b[A\n",
      " 48%|███████████████████▋                     | 202/421 [00:12<00:13, 16.39it/s]\u001b[A\n",
      " 48%|███████████████████▊                     | 204/421 [00:12<00:13, 16.34it/s]\u001b[A\n",
      " 49%|████████████████████                     | 206/421 [00:12<00:12, 16.70it/s]\u001b[A\n",
      " 49%|████████████████████▎                    | 208/421 [00:12<00:13, 16.08it/s]\u001b[A\n",
      " 50%|████████████████████▍                    | 210/421 [00:12<00:12, 16.49it/s]\u001b[A\n",
      " 50%|████████████████████▋                    | 212/421 [00:12<00:12, 16.22it/s]\u001b[A\n",
      " 51%|████████████████████▊                    | 214/421 [00:13<00:12, 16.30it/s]\u001b[A\n",
      " 52%|█████████████████████▏                   | 217/421 [00:13<00:11, 17.52it/s]\u001b[A\n",
      " 52%|█████████████████████▎                   | 219/421 [00:13<00:11, 16.95it/s]\u001b[A\n",
      " 52%|█████████████████████▌                   | 221/421 [00:13<00:11, 16.68it/s]\u001b[A\n",
      " 53%|█████████████████████▋                   | 223/421 [00:13<00:12, 16.10it/s]\u001b[A\n",
      " 53%|█████████████████████▉                   | 225/421 [00:13<00:12, 16.32it/s]\u001b[A\n",
      " 54%|██████████████████████                   | 227/421 [00:13<00:12, 15.99it/s]\u001b[A\n",
      " 54%|██████████████████████▎                  | 229/421 [00:14<00:12, 15.93it/s]\u001b[A\n",
      " 55%|██████████████████████▍                  | 231/421 [00:14<00:12, 15.52it/s]\u001b[A\n",
      " 55%|██████████████████████▋                  | 233/421 [00:14<00:12, 14.70it/s]\u001b[A\n",
      " 56%|██████████████████████▉                  | 235/421 [00:14<00:12, 14.88it/s]\u001b[A\n",
      " 56%|███████████████████████                  | 237/421 [00:14<00:12, 15.22it/s]\u001b[A\n",
      " 57%|███████████████████████▎                 | 239/421 [00:14<00:12, 14.94it/s]\u001b[A\n",
      " 57%|███████████████████████▍                 | 241/421 [00:14<00:11, 15.30it/s]\u001b[A\n",
      " 58%|███████████████████████▋                 | 243/421 [00:14<00:11, 16.18it/s]\u001b[A\n",
      " 58%|███████████████████████▊                 | 245/421 [00:15<00:10, 16.29it/s]\u001b[A\n",
      " 59%|████████████████████████                 | 247/421 [00:15<00:10, 16.50it/s]\u001b[A\n",
      " 59%|████████████████████████▏                | 249/421 [00:15<00:10, 16.64it/s]\u001b[A\n",
      " 60%|████████████████████████▍                | 251/421 [00:15<00:10, 16.26it/s]\u001b[A\n",
      " 60%|████████████████████████▋                | 253/421 [00:15<00:10, 16.11it/s]\u001b[A\n",
      " 61%|████████████████████████▊                | 255/421 [00:15<00:10, 15.58it/s]\u001b[A\n",
      " 61%|█████████████████████████▏               | 258/421 [00:15<00:09, 17.05it/s]\u001b[A\n",
      " 62%|█████████████████████████▎               | 260/421 [00:15<00:09, 16.69it/s]\u001b[A\n",
      " 62%|█████████████████████████▌               | 262/421 [00:16<00:10, 15.84it/s]\u001b[A\n",
      " 63%|█████████████████████████▋               | 264/421 [00:16<00:10, 15.30it/s]\u001b[A\n",
      " 63%|█████████████████████████▉               | 266/421 [00:16<00:10, 15.28it/s]\u001b[A\n",
      " 64%|██████████████████████████               | 268/421 [00:16<00:10, 14.91it/s]\u001b[A\n",
      " 64%|██████████████████████████▎              | 270/421 [00:16<00:09, 15.55it/s]\u001b[A\n",
      " 65%|██████████████████████████▍              | 272/421 [00:16<00:09, 15.11it/s]\u001b[A\n",
      " 65%|██████████████████████████▋              | 274/421 [00:16<00:10, 14.62it/s]\u001b[A\n",
      " 66%|██████████████████████████▉              | 276/421 [00:17<00:09, 15.38it/s]\u001b[A\n",
      " 66%|███████████████████████████              | 278/421 [00:17<00:09, 15.57it/s]\u001b[A\n",
      " 67%|███████████████████████████▎             | 280/421 [00:17<00:10, 14.09it/s]\u001b[A\n",
      " 67%|███████████████████████████▍             | 282/421 [00:17<00:10, 13.40it/s]\u001b[A\n",
      " 67%|███████████████████████████▋             | 284/421 [00:17<00:10, 12.70it/s]\u001b[A\n",
      " 68%|███████████████████████████▊             | 286/421 [00:17<00:10, 12.83it/s]\u001b[A\n",
      " 68%|████████████████████████████             | 288/421 [00:17<00:10, 13.27it/s]\u001b[A\n",
      " 69%|████████████████████████████▏            | 290/421 [00:18<00:09, 13.85it/s]\u001b[A\n",
      " 69%|████████████████████████████▍            | 292/421 [00:18<00:09, 13.28it/s]\u001b[A\n",
      " 70%|████████████████████████████▋            | 294/421 [00:18<00:09, 13.13it/s]\u001b[A\n",
      " 70%|████████████████████████████▊            | 296/421 [00:18<00:09, 13.11it/s]\u001b[A\n",
      " 71%|█████████████████████████████            | 298/421 [00:18<00:09, 13.35it/s]\u001b[A\n",
      " 71%|█████████████████████████████▏           | 300/421 [00:18<00:09, 13.03it/s]\u001b[A\n",
      " 72%|█████████████████████████████▍           | 302/421 [00:19<00:09, 13.16it/s]\u001b[A\n",
      " 72%|█████████████████████████████▌           | 304/421 [00:19<00:09, 12.90it/s]\u001b[A\n",
      " 73%|█████████████████████████████▊           | 306/421 [00:19<00:08, 12.93it/s]\u001b[A\n",
      " 73%|█████████████████████████████▉           | 308/421 [00:19<00:09, 12.47it/s]\u001b[A\n",
      " 74%|██████████████████████████████▏          | 310/421 [00:19<00:08, 13.37it/s]\u001b[A\n",
      " 74%|██████████████████████████████▍          | 312/421 [00:19<00:08, 13.57it/s]\u001b[A\n",
      " 75%|██████████████████████████████▌          | 314/421 [00:19<00:07, 14.14it/s]\u001b[A\n",
      " 75%|██████████████████████████████▊          | 316/421 [00:20<00:07, 14.25it/s]\u001b[A\n",
      " 76%|██████████████████████████████▉          | 318/421 [00:20<00:07, 14.59it/s]\u001b[A\n",
      " 76%|███████████████████████████████▏         | 320/421 [00:20<00:06, 15.01it/s]\u001b[A\n",
      " 76%|███████████████████████████████▎         | 322/421 [00:20<00:06, 15.34it/s]\u001b[A\n",
      " 77%|███████████████████████████████▌         | 324/421 [00:20<00:06, 15.88it/s]\u001b[A\n",
      " 77%|███████████████████████████████▋         | 326/421 [00:20<00:05, 16.27it/s]\u001b[A\n",
      " 78%|███████████████████████████████▉         | 328/421 [00:20<00:05, 15.98it/s]\u001b[A\n",
      " 78%|████████████████████████████████▏        | 330/421 [00:20<00:05, 16.75it/s]\u001b[A\n",
      " 79%|████████████████████████████████▎        | 332/421 [00:21<00:05, 16.69it/s]\u001b[A\n",
      " 79%|████████████████████████████████▌        | 334/421 [00:21<00:05, 16.58it/s]\u001b[A\n",
      " 80%|████████████████████████████████▋        | 336/421 [00:21<00:05, 16.72it/s]\u001b[A\n",
      " 80%|████████████████████████████████▉        | 338/421 [00:21<00:04, 17.40it/s]\u001b[A\n",
      " 81%|█████████████████████████████████        | 340/421 [00:21<00:04, 16.21it/s]\u001b[A\n",
      " 81%|█████████████████████████████████▎       | 342/421 [00:21<00:04, 16.81it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▌       | 344/421 [00:21<00:04, 16.62it/s]\u001b[A\n",
      " 82%|█████████████████████████████████▋       | 346/421 [00:21<00:04, 16.67it/s]\u001b[A\n",
      " 83%|█████████████████████████████████▉       | 348/421 [00:21<00:04, 15.93it/s]\u001b[A\n",
      " 83%|██████████████████████████████████       | 350/421 [00:22<00:04, 15.81it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▎      | 352/421 [00:22<00:04, 15.10it/s]\u001b[A\n",
      " 84%|██████████████████████████████████▍      | 354/421 [00:22<00:04, 14.31it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▋      | 356/421 [00:22<00:04, 13.93it/s]\u001b[A\n",
      " 85%|██████████████████████████████████▊      | 358/421 [00:22<00:04, 13.15it/s]\u001b[A\n",
      " 86%|███████████████████████████████████      | 360/421 [00:22<00:04, 13.93it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▎     | 362/421 [00:22<00:03, 14.77it/s]\u001b[A\n",
      " 86%|███████████████████████████████████▍     | 364/421 [00:23<00:03, 15.93it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▋     | 366/421 [00:23<00:03, 15.90it/s]\u001b[A\n",
      " 87%|███████████████████████████████████▊     | 368/421 [00:23<00:03, 14.85it/s]\u001b[A\n",
      " 88%|████████████████████████████████████     | 370/421 [00:23<00:03, 15.88it/s]\u001b[A\n",
      " 88%|████████████████████████████████████▏    | 372/421 [00:23<00:03, 15.61it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▍    | 374/421 [00:23<00:02, 16.22it/s]\u001b[A\n",
      " 89%|████████████████████████████████████▌    | 376/421 [00:23<00:02, 16.27it/s]\u001b[A\n",
      " 90%|████████████████████████████████████▊    | 378/421 [00:23<00:02, 15.98it/s]\u001b[A\n",
      " 90%|█████████████████████████████████████    | 380/421 [00:24<00:02, 14.62it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▏   | 382/421 [00:24<00:02, 14.08it/s]\u001b[A\n",
      " 91%|█████████████████████████████████████▍   | 384/421 [00:24<00:02, 13.71it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▌   | 386/421 [00:24<00:02, 14.31it/s]\u001b[A\n",
      " 92%|█████████████████████████████████████▊   | 388/421 [00:24<00:02, 14.64it/s]\u001b[A\n",
      " 93%|█████████████████████████████████████▉   | 390/421 [00:24<00:02, 15.44it/s]\u001b[A\n",
      " 93%|██████████████████████████████████████▏  | 392/421 [00:24<00:01, 14.68it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▎  | 394/421 [00:25<00:01, 15.21it/s]\u001b[A\n",
      " 94%|██████████████████████████████████████▌  | 396/421 [00:25<00:01, 16.18it/s]\u001b[A\n",
      " 95%|██████████████████████████████████████▊  | 398/421 [00:25<00:01, 15.84it/s]\u001b[A\n",
      " 95%|██████████████████████████████████████▉  | 400/421 [00:25<00:01, 16.20it/s]\u001b[A\n",
      " 95%|███████████████████████████████████████▏ | 402/421 [00:25<00:01, 16.26it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▎ | 404/421 [00:25<00:01, 16.56it/s]\u001b[A\n",
      " 96%|███████████████████████████████████████▌ | 406/421 [00:25<00:00, 17.37it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▋ | 408/421 [00:25<00:00, 17.06it/s]\u001b[A\n",
      " 97%|███████████████████████████████████████▉ | 410/421 [00:26<00:00, 17.41it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████ | 412/421 [00:26<00:00, 18.07it/s]\u001b[A\n",
      " 98%|████████████████████████████████████████▎| 414/421 [00:26<00:00, 17.60it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▌| 416/421 [00:26<00:00, 16.38it/s]\u001b[A\n",
      " 99%|████████████████████████████████████████▋| 418/421 [00:26<00:00, 16.66it/s]\u001b[A\n",
      "                                                                                \u001b[A\n",
      " 94%|██████████████████████████████████▋  | 3000/3200 [2:02:10<08:04,  2.42s/it]\n",
      "100%|█████████████████████████████████████████| 421/421 [00:26<00:00, 16.95it/s]\u001b[A\n",
      "                                                                                \u001b[ASaving model checkpoint to ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-3000\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-3000/config.json\n",
      "Model weights saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-3000/pytorch_model.bin\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-3000/preprocessor_config.json\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      "Deleting older checkpoint [wav2vec2-large-xls-r-300m-romansh-vallader/checkpoint-2000] due to args.save_total_limit\n",
      "100%|█████████████████████████████████████| 3200/3200 [2:11:10<00:00,  1.80s/it]\n",
      "\n",
      "Training completed. Do not forget to share your model on huggingface.co/models =)\n",
      "\n",
      "\n",
      "100%|█████████████████████████████████████| 3200/3200 [2:11:10<00:00,  2.46s/it]\n",
      "Saving model checkpoint to ./wav2vec2-large-xls-r-300m-romansh-vallader\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/config.json\n",
      "Model weights saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/pytorch_model.bin\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      "The following columns in the evaluation set  don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
      "***** Running Evaluation *****\n",
      "  Num examples = 421\n",
      "  Batch size = 1\n",
      "100%|█████████████████████████████████████████| 421/421 [00:26<00:00, 16.03it/s]\n",
      "Saving model checkpoint to ./wav2vec2-large-xls-r-300m-romansh-vallader\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/config.json\n",
      "Model weights saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/pytorch_model.bin\n",
      "Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-vallader/preprocessor_config.json\n",
      "Upload file pytorch_model.bin:  98%|██████▉| 1.16G/1.18G [00:40<00:00, 32.1MB/s]To https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-romansh-vallader\n",
      "   bacb858..1f1d53e  main -> main\n",
      "\n",
      "Upload file pytorch_model.bin: 100%|███████| 1.18G/1.18G [00:41<00:00, 30.5MB/s]\n",
      "Dropping the following result as it does not have all the necessary fields:\n",
      "{'dataset': {'name': 'MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RM-VALLADER', 'type': 'common_voice', 'args': 'Config: rm-vallader, Training split: train+validation, Eval split: test'}}\n",
      "To https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-romansh-vallader\n",
      "   1f1d53e..3e548a9  main -> main\n",
      "\n"
     ]
    }
   ],
   "source": [
    "!python run_speech_recognition_ctc.py \\\n",
    "\t--dataset_name=\"mozilla-foundation/common_voice_7_0\" \\\n",
    "\t--model_name_or_path=\"facebook/wav2vec2-xls-r-300m\" \\\n",
    "\t--dataset_config_name=\"rm-vallader\" \\\n",
    "\t--output_dir=\"./wav2vec2-large-xls-r-300m-romansh-vallader\" \\\n",
    "\t--overwrite_output_dir \\\n",
    "\t--num_train_epochs=\"100\" \\\n",
    "\t--per_device_train_batch_size=\"32\" \\\n",
    "\t--per_device_eval_batch_size=\"1\" \\\n",
    "\t--gradient_accumulation_steps=\"1\" \\\n",
    "\t--learning_rate=\"7e-5\" \\\n",
    "\t--warmup_steps=\"500\" \\\n",
    "\t--length_column_name=\"input_length\" \\\n",
    "\t--evaluation_strategy=\"steps\" \\\n",
    "\t--text_column_name=\"sentence\" \\\n",
    "\t--chars_to_ignore , ? . ! \\- \\; \\: \\\" “ % ‘ ” � — ’ … – \\' \\\n",
    "\t--save_steps=\"500\" \\\n",
    "\t--eval_steps=\"500\" \\\n",
    "\t--logging_steps=\"100\" \\\n",
    "\t--layerdrop=\"0.0\" \\\n",
    "\t--activation_dropout=\"0.1\" \\\n",
    "\t--save_total_limit=\"2\" \\\n",
    "\t--freeze_feature_encoder \\\n",
    "\t--feat_proj_dropout=\"0.0\" \\\n",
    "\t--mask_time_prob=\"0.75\" \\\n",
    "\t--mask_time_length=\"10\" \\\n",
    "\t--mask_feature_prob=\"0.25\" \\\n",
    "\t--mask_feature_length=\"64\" \\\n",
    "\t--gradient_checkpointing \\\n",
    "\t--use_auth_token \\\n",
    "\t--fp16 \\\n",
    "\t--group_by_length \\\n",
    "\t--do_train --do_eval \\\n",
    "    --push_to_hub > out.log"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "0zBb4QMVcSeV"
   },
   "outputs": [],
   "source": [
    "# !rm -rf wav2vec2-large-xls-r-300m-bashkir"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "jxvhTTQ2cSeV"
   },
   "outputs": [],
   "source": [
    "!ls -ltr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "okCO9-XTcSeV",
    "outputId": "a47bb25e-904a-4c1e-8871-d996a16b6bcc"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Filesystem      Size  Used Avail Use% Mounted on\n",
      "overlay         3.5T  1.2T  2.2T  34% /\n",
      "tmpfs            64M     0   64M   0% /dev\n",
      "tmpfs            87G     0   87G   0% /sys/fs/cgroup\n",
      "tmpfs            87G     0   87G   0% /dev/shm\n",
      "/dev/md0        3.5T  1.2T  2.2T  34% /etc/group\n",
      "tmpfs            87G   12K   87G   1% /proc/driver/nvidia\n",
      "/dev/vda1        49G  6.5G   42G  14% /usr/bin/nvidia-smi\n",
      "udev             87G     0   87G   0% /dev/nvidia0\n",
      "tmpfs            87G     0   87G   0% /proc/acpi\n",
      "tmpfs            87G     0   87G   0% /proc/scsi\n",
      "tmpfs            87G     0   87G   0% /sys/firmware\n"
     ]
    }
   ],
   "source": [
    "!df -h"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "axSDvjOMdkxW"
   },
   "outputs": [],
   "source": [
    "# !pip install -U datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 238,
     "referenced_widgets": [
      "7c34d36b28e54989b0c509eae1bd9a0f",
      "eba629a92467433c92840e4450e7a937",
      "cf1afb1025d24c1cbbb1eefd26535a26",
      "f347c0838adf462d886a4ae36a3a6b41",
      "37bdb17bf4734fd4b92759c874a4d4b8",
      "4685ef4f82764fada48035b4de9af9e2",
      "aab799184cf8453e9cf026a32abff619",
      "1795d07714684311b1ccea7514f298e4",
      "7fa8f65c508e4e629b1a2212aaa64ebc",
      "c139ed75ff4d47d593f8cb5f3fa4c105",
      "776dc15d8836456281084dc154d769e4",
      "f3a862eb1219484b8d9381fb0d16b063",
      "da3f94cc1140466cbcbdb3e03cbea8c2",
      "2fedf1edcc184d9b8c67712511f8bfef",
      "25142b9649ef403c8b37cdb7f9a8de4b",
      "8f5cd0e3111241b8a61914dac82acf73",
      "7340567ea42d42709f8099a249f6b5dd",
      "7365cf85ddff4b26a27c9b797c573949",
      "2fbc062ac19f4eb7a8adff2a5118bea4",
      "ae5b0f9f37e44e8e965f7e20dfdf3bfa",
      "24aeaf260d2240d08466c5e3a01d95cb",
      "06ec543be0a34943959c3140119c4d6e",
      "311cbd6bf6df4c35b7819e49fb55a562",
      "3bc2760daaa346b2b20d76d6cf4ed336",
      "c4b226675ad84ff29f62847767065469",
      "0be3f91b1071464d979c0c59baff32f4",
      "7c4a653d81474818b084b71657f71e0f",
      "cb10ec01c16a4c50bf8e4c8aec491aa2",
      "ec67f65de50b4038ac3b01496ef56f98",
      "4b2562825d8e4c5484008cd054e01216",
      "209d975f5d4e4300bf01bb6b2472d493",
      "690f71c3c232421c8cd92a28b5435b55",
      "4f4d422bdd49486c940713c19e754479",
      "e5d1a213afc04270926da41e12b30362",
      "30afb513746845b481227b3191df4c90",
      "c7017ddc94104c27b42658f27f275908",
      "155de8f44ddf4021a5d1d4d4968934db",
      "cb3b32862a12486f8625d667bb45c368",
      "832b4fcaf152402e84bfdaf9833d061f",
      "8af6a305cc8a4a038f74f39e6ea8f040",
      "4c316c3eddd64af1b4d892516e1ced03",
      "efd0fc9b3766457484533a6eb59f2cd4",
      "27d72d36fe604e5d96d6a979ed6d50ee",
      "f90669ec059249ca81a0e2c5891834db",
      "67d3fcb0869a4485b24846d3b1e34fca",
      "3db73d64f4e54cad8f8cd0f5facc33c0",
      "d434124da4654ada92573070353dbce1",
      "3c36f662c44e453ca935753e6dc18060",
      "0d0ab06d275d49f5b1ac57b28c53c158",
      "61771b0bdfe543b88fc8673a510a986c",
      "63d4b794d9df49c6ab6f77f10a76861d",
      "42bb543380e14d859f42e966b3c54bc2",
      "00a1878e3cda42e1982093e185935937",
      "9cce7704e9e74588aa7aa3b9ddf9672f",
      "a27c1dd0b5c447058bf8abde274d7085",
      "1ee70ac9891d4104ad801f75b4081c9f",
      "eda7343054624f4d8a2e2b981b4fab41",
      "f56579df97b94a5a8b3a0fbf32905687",
      "aee17658cd4b4fe49a759ad6c9d5a576",
      "3a6e34083c8f4066a6718c957958cfa6",
      "8148f4330d0f441998d9a3ca4942bc22",
      "9ea974dfe1184fe3897a7d9d031c7624",
      "a968de55d2e148f88084ac96444c17ee",
      "c0aeab2086de4ca7ad8b5f0bbcde009c",
      "05d04f345a3148dd9053a5d524592333",
      "7a68ba6f90a24162a973ba5146c2f546",
      "a4411af1dda24dec9b863793ccd22390",
      "f085643a56b94b74bb7e883598170f01",
      "ee8a677f68a147e5b10a35518616e264",
      "315ae5446f264660bbe6119e8261495d",
      "64b970adf3af40268fb60e38140157e2",
      "2ac4df7918404aed92611750471cd85f",
      "7bf164fec94c40858cf5280937f8e00a",
      "0e1672eeb5244df9bf0cbd095625d68a",
      "ee80362b77ef4375bb931af34bc16d07",
      "fed5fdea500f46618789c44aef2bff3b",
      "f49c5c9c58ee482a8264e422d4610a8a",
      "6a9e0e280ef7493eb4557429d6f53685",
      "c51fb67419ed47f98c5ed4ad4e33aeff",
      "2de6d3927c534397ab122a9cf6332a33",
      "f3891dcc62b74ccd8d5a61b0ca761b2a",
      "9958cd546fbe477092527a14bb3bfe21",
      "639f180d5e02425dba7d4c4bca07c59b",
      "4da0d9054bd74fb2a77bb40371c99a7b",
      "3f8a5e226fbf4175b4fa7f39a2a9d290",
      "41515b22976648aabe660b8df3506c4c",
      "b2a72b0caf104aee8dd95bff01cc52a4",
      "6b8769a26838449e9d7d45fc5cc7a6f6",
      "50862512d9c14dbd92f8cc3d795d4cd2",
      "352fc0a527024af8a284c53f4d521fec",
      "67653ac95966464994b1e0a889cfc5d9",
      "778d0a9a7de243eba8dd1c0caf3aa82e",
      "14eb779636914797867b7315f347839d",
      "25a5802292874e49bb42a1489ff54b31",
      "89a05d4149534d78935e169c6623f458",
      "49f46100f43346d2bdb402e2fd1a1951",
      "5e2e7ad6aa8f4f51adf7f6376b84f618",
      "2e918f153be0489dbf0ad64bc45c563c",
      "c319fa946f3e4380864aed6d3fbb77e7"
     ]
    },
    "id": "82uZWUF_cSeW",
    "outputId": "e78215f2-d452-4d92-a94c-0a469f8760d4"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Downloading and preparing dataset common_voice/rm-vallader to /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/rm-vallader/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b...\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "005abadc03e34a32b8d6fa89096edcf2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/114M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "0 examples [00:00, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "0 examples [00:00, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "0 examples [00:00, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "0 examples [00:00, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "0 examples [00:00, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset common_voice downloaded and prepared to /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/rm-vallader/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b. Subsequent calls will reuse this data.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/rm-vallader/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1010\n"
     ]
    }
   ],
   "source": [
    "from datasets import load_dataset, load_metric, Audio\n",
    "\n",
    "common_voice_train = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"rm-vallader\", use_auth_token=True, split=\"train+validation\")\n",
    "common_voice_test = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"rm-vallader\", use_auth_token=True, split=\"test\")\n",
    "\n",
    "print(len(common_voice_train))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "1Qa9wKa4cSeW",
    "outputId": "da721286-89ac-421c-a269-e779449488c6"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dataset({\n",
       "    features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
       "    num_rows: 1010\n",
       "})"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "common_voice_train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "H_KRIMbEcSeX",
    "outputId": "90601843-d465-4cd3-dff0-9d2302e02699"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3156.25"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(common_voice_train) * 100 / 32"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "id": "ZUc_UAMbcSeX"
   },
   "outputs": [],
   "source": [
    "common_voice_train = common_voice_train.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\"])\n",
    "common_voice_test = common_voice_test.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "id": "OKxWKzjMcSeX"
   },
   "outputs": [],
   "source": [
    "from datasets import ClassLabel\n",
    "import random\n",
    "import pandas as pd\n",
    "from IPython.display import display, HTML\n",
    "\n",
    "def show_random_elements(dataset, num_examples=10):\n",
    "    assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
    "    picks = []\n",
    "    for _ in range(num_examples):\n",
    "        pick = random.randint(0, len(dataset)-1)\n",
    "        while pick in picks:\n",
    "            pick = random.randint(0, len(dataset)-1)\n",
    "        picks.append(pick)\n",
    "    \n",
    "    df = pd.DataFrame(dataset[picks])\n",
    "    display(HTML(df.to_html()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 363
    },
    "id": "uR3e--0AcSeY",
    "outputId": "efb84606-2717-4040-ca02-86975a2f4824"
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sentence</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Meinsvart gronds sco pulits vadials.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Tochen primavera sundel jeu eligius sco mistral e cheu dat ei nuot da marcadar.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>El vegn a restar.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Meins aultas ein las frequenzas tier ils films dils carschi stadas.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Ses egls eran tut cotschens dil bargir.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>La veta d’ina battaria cuoza entuorn quater onns.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>La distribuziun fina el Grischun viva dalla glieud che va ellas apotecas dalla regiun.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>Dalla vart dils umens eran las largias pli grondas.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>Gia biars han empruau ei, mo negin ei puspei turnaus a casa.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>Miu bab ha capiu da svegliar en mei l’amur per nies lungatg romontsch.</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "show_random_elements(common_voice_train.remove_columns([\"path\", \"audio\"]), num_examples=10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "id": "x_zfqqoVcSeY"
   },
   "outputs": [],
   "source": [
    "import re\n",
    "chars_to_remove_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\“\\%\\‘\\”\\�\\—\\’\\…\\–\\']'\n",
    "\n",
    "def remove_special_characters(batch):\n",
    "    batch[\"sentence\"] = re.sub(chars_to_remove_regex, '', batch[\"sentence\"]).lower()\n",
    "    return batch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 81,
     "referenced_widgets": [
      "d8426e73abce4cbaa58a89aef1fce8b7",
      "ae51183c24fe42809d080fd15c298f92",
      "21c9c4302a76449784f314c15ca59bea",
      "fcc23e29fde64cde92f2ae57d7cabd78",
      "61ac7115c9b24ebb855343cc01b1d3f4",
      "90b3e47068e747c7be958d22fb56fe4f",
      "820d84c1afc7416e9368a246ab8d5ce9",
      "07447e6083b04bfeb04e5a601fe475bd",
      "822d95bb43c44a4394441d92e25120d7",
      "138580d9724141448ff8a5e11ef415ce",
      "1a03059af7bb40da924ecf3e709d7e0d",
      "b9d888877a7e4a24b07f4fb91ceda179",
      "36db5c636fcf46518685b91a168d9c11",
      "4407f3810d5d4820acf8db794ce305e6",
      "72fee1a44b5343a7add71c9649139317",
      "9b22b13729bf4f20b8b96da540cfaa3f",
      "90bde27c6e564ca285a65d6b594d6865",
      "256669df6862481cbd0bbcee229e2efe",
      "07b40214652e48adbae525787288795d",
      "57e054662b5d497b8e1f3d99fb72034f",
      "81a7889575ed4e0293f7ce56032e6edb",
      "00a619827a094be4ae891726e44ddd97"
     ]
    },
    "id": "BQfNU564cSeZ",
    "outputId": "6ca3ff91-8acb-4096-d746-aed7edb4055a"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bdb213ed6aab4c1b8e36f39f145f73e4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/2675 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9118ed7bfda24b15878279a5dd8fea64",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1240 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "common_voice_train = common_voice_train.map(remove_special_characters)\n",
    "common_voice_test = common_voice_test.map(remove_special_characters)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "id": "liHWiYx9cSeZ"
   },
   "outputs": [],
   "source": [
    "# start_with_ar = common_voice_train.filter(lambda example: \"⅛\" in example['sentence'])\n",
    "# start_with_ar[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "id": "gdGzeDEVcSeZ"
   },
   "outputs": [],
   "source": [
    "# start_with_ar"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "id": "d9Fe6xH1cSea"
   },
   "outputs": [],
   "source": [
    "def replace_hatted_characters(batch):\n",
    "#     batch[\"sentence\"] = re.sub('[â]', 'a', batch[\"sentence\"])\n",
    "#     batch[\"sentence\"] = re.sub('[î]', 'i', batch[\"sentence\"])\n",
    "#     batch[\"sentence\"] = re.sub('[ô]', 'o', batch[\"sentence\"])\n",
    "#     batch[\"sentence\"] = re.sub('[û]', 'u', batch[\"sentence\"])\n",
    "#     batch[\"sentence\"] = re.sub('&', 'and', batch[\"sentence\"])\n",
    "    return batch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 81,
     "referenced_widgets": [
      "e106fee906b8408ebba822b4ff70693f",
      "af14186997de449f997936a81d69876b",
      "2d251c97292c4824a6cb218548c17353",
      "fcf8a57a02ec44398b95f4a64ad2f0fe",
      "8aaba2878c2c484e8fbf9d81354f924f",
      "95c3ba1f3cef4ca887dd8461db595c0a",
      "7092d73471c44875b496924bc82858df",
      "2d63896d07f64d91abb45c257ace72db",
      "781d2e3803574e2c841acfd1e090b84f",
      "d43443cf2579467a9cc3e9f05c607615",
      "19b70fdd00dc47f8b79f0d3acc68d11a",
      "992b23b615fb4e88a92782c64ad60cc2",
      "46031a26e4ff42819f1169eb07718b46",
      "0c8b1327b27449a49f9b71fdc80d831c",
      "c22392fb7cf0489caf741568e796fc9d",
      "b17ceb2a58d64747aafd29836e681e02",
      "cb8b0320a4794b278f86c33bbfc9825f",
      "1e7f593023d544e1afe46359567abfca",
      "33fffaf4bc4a405187a2dd4eaa7ffc67",
      "173c6246acdb4a3bbf6dce2e236499a2",
      "478464758f2b455bb8848ef4046ed11d",
      "ce845667dcf54353b02299f85dcda29d"
     ]
    },
    "id": "f8K35VABcSea",
    "outputId": "3c0f55b5-3d44-4058-b362-896ebb58901c"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "46bf3dc04b214ebebfa87e0df4dfbfbe",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/2675 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a7d33c176a3c4988b3aa1b53086bdfab",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1240 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "common_voice_train = common_voice_train.map(replace_hatted_characters)\n",
    "common_voice_test = common_voice_test.map(replace_hatted_characters)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "id": "DOIBoakvcSea"
   },
   "outputs": [],
   "source": [
    "def extract_all_chars(batch):\n",
    "  all_text = \" \".join(batch[\"sentence\"])\n",
    "  vocab = list(set(all_text))\n",
    "  return {\"vocab\": [vocab], \"all_text\": [all_text]}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 81,
     "referenced_widgets": [
      "43a3718f19944ea7bda27a96e3816a78",
      "2ec6b96f3d8449c08a8b62b85ccb57dc",
      "8137d055bfd14a058a8755d00e5fe260",
      "6fa1c2f06d0c43c38c76a7ace7c178a5",
      "d8593055a0ea45f5ab13377c18e2b1e0",
      "85ff02f4cd7141a4aba5e1e83bb144d2",
      "fe412730e037441b961a664573d02ae7",
      "a33fe3bf150949fd9679ff1fe91d4433",
      "49aa86ddf29944b281b830b99e1ac4fe",
      "efb5e6e4970f43d1b6197e4aaedac0b7",
      "6e1517cd2bed4a35b52de6cdc812b75c",
      "557ddd52295c43a69b6fd2689edb46b4",
      "19630b62bebe4a8f9e775e59ee46fb9c",
      "4256584d0f934678901c4c1ac7f73d42",
      "0120e6cb1edc429ebf0a6437dc3378fe",
      "d9c616f1d67c4590a55bf797d8ab1904",
      "2d96a892d0a94a89b756e23ff19a1c1f",
      "c87e36307bf84cf4970afce9e496117d",
      "20d3b7a6a43143419d9cb64e557b3acc",
      "16dd9300014545caa901274f385e6a91",
      "c6c51e30cbb1472f9e1a49bc0f5bb2cc",
      "002decc6fb504205ae9f61a4871e1532"
     ]
    },
    "id": "ZvFltuhucSea",
    "outputId": "fb969f7f-7172-4d82-8116-3dab25bd85a2"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2f09ddfb67134b2eb340ef55354838b0",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1 [00:00<?, ?ba/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5b052409ca654eaebf73297ea9026cdc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1 [00:00<?, ?ba/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "vocab_train = common_voice_train.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_train.column_names)\n",
    "vocab_test = common_voice_test.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_test.column_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "id": "FJD7IXLkcSeb"
   },
   "outputs": [],
   "source": [
    "vocab_list = list(set(vocab_train[\"vocab\"][0]) | set(vocab_test[\"vocab\"][0]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "e50XUYe3cSeb",
    "outputId": "769619ae-7ad5-4504-f454-34a24d642534"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{' ': 0,\n",
       " 'a': 1,\n",
       " 'b': 2,\n",
       " 'c': 3,\n",
       " 'd': 4,\n",
       " 'e': 5,\n",
       " 'f': 6,\n",
       " 'g': 7,\n",
       " 'h': 8,\n",
       " 'i': 9,\n",
       " 'j': 10,\n",
       " 'k': 11,\n",
       " 'l': 12,\n",
       " 'm': 13,\n",
       " 'n': 14,\n",
       " 'o': 15,\n",
       " 'p': 16,\n",
       " 'q': 17,\n",
       " 'r': 18,\n",
       " 's': 19,\n",
       " 't': 20,\n",
       " 'u': 21,\n",
       " 'v': 22,\n",
       " 'w': 23,\n",
       " 'x': 24,\n",
       " 'y': 25,\n",
       " 'z': 26,\n",
       " '«': 27,\n",
       " '»': 28,\n",
       " 'à': 29,\n",
       " 'ä': 30,\n",
       " 'è': 31,\n",
       " 'é': 32,\n",
       " 'ò': 33,\n",
       " 'ö': 34,\n",
       " 'ü': 35}"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vocab_dict = {v: k for k, v in enumerate(sorted(vocab_list))}\n",
    "vocab_dict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 128
    },
    "id": "wWofPlfMcSeb",
    "outputId": "cf9d5cdb-ffe1-46d5-af5c-f7c34cb4b59d"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "38\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "file ./config.json not found\n",
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
      "/opt/conda/lib/python3.8/site-packages/huggingface_hub/hf_api.py:1001: FutureWarning: `create_repo` now takes `token` as an optional positional argument. Be sure to adapt your code!\n",
      "  warnings.warn(\n",
      "Cloning https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-romansh-sursilvan into local empty directory.\n",
      "To https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-romansh-sursilvan\n",
      "   00e5ead..0c47ae0  main -> main\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-romansh-sursilvan/commit/0c47ae07e50d16537a12a7574e6e2f077d11cd3d'"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vocab_dict[\"|\"] = vocab_dict[\" \"]\n",
    "del vocab_dict[\" \"]\n",
    "\n",
    "vocab_dict[\"[UNK]\"] = len(vocab_dict)\n",
    "vocab_dict[\"[PAD]\"] = len(vocab_dict)\n",
    "print(len(vocab_dict))\n",
    "\n",
    "import json\n",
    "with open('./vocab.json', 'w') as vocab_file:\n",
    "    json.dump(vocab_dict, vocab_file)\n",
    "    \n",
    "from transformers import Wav2Vec2CTCTokenizer\n",
    "\n",
    "tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(\"./\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\"|\")\n",
    "\n",
    "repo_name = \"wav2vec2-large-xls-r-300m-romansh-sursilvan\"\n",
    "\n",
    "# tokenizer.save_pretrained(repo_name)\n",
    "\n",
    "tokenizer.push_to_hub(repo_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "1XVJcIykcSeb",
    "outputId": "67c53812-24ce-4dee-bb95-608971d61338"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2022-01-30 07:10:29--  https://raw.githubusercontent.com/huggingface/transformers/master/examples/research_projects/robust-speech-event/eval.py\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 4738 (4.6K) [text/plain]\n",
      "Saving to: ‘eval.py’\n",
      "\n",
      "eval.py             100%[===================>]   4.63K  --.-KB/s    in 0s      \n",
      "\n",
      "2022-01-30 07:10:29 (16.6 MB/s) - ‘eval.py’ saved [4738/4738]\n",
      "\n",
      "total 1232584\n",
      "-rw-r--r-- 1 ovh ovh        300 Jan 30 02:51 vocab.json\n",
      "-rw-r--r-- 1 ovh ovh        260 Jan 30 02:51 tokenizer_config.json\n",
      "-rw-r--r-- 1 ovh ovh        309 Jan 30 02:51 special_tokens_map.json\n",
      "-rw-r--r-- 1 ovh ovh         23 Jan 30 02:51 added_tokens.json\n",
      "drwxr-xr-x 2 ovh ovh       4096 Jan 30 04:36 checkpoint-500\n",
      "drwxr-xr-x 2 ovh ovh       4096 Jan 30 06:22 checkpoint-1000\n",
      "-rw-r--r-- 1 ovh ovh       2521 Jan 30 07:06 trainer_state.json\n",
      "-rw-r--r-- 1 ovh ovh        197 Jan 30 07:06 train_results.json\n",
      "-rw-r--r-- 1 ovh ovh        224 Jan 30 07:06 eval_results.json\n",
      "-rw-r--r-- 1 ovh ovh       2033 Jan 30 07:06 config.json\n",
      "-rw-r--r-- 1 ovh ovh        398 Jan 30 07:06 all_results.json\n",
      "-rw-r--r-- 1 ovh ovh 1262063089 Jan 30 07:06 pytorch_model.bin\n",
      "-rw-r--r-- 1 ovh ovh        212 Jan 30 07:06 preprocessor_config.json\n",
      "-rw-r--r-- 1 ovh ovh       3055 Jan 30 07:06 training_args.bin\n",
      "-rw-r--r-- 1 ovh ovh       1709 Jan 30 07:08 README.md\n",
      "-rw-r--r-- 1 ovh ovh       4738 Jan 30 07:10 eval.py\n",
      "-rw-r--r-- 1 ovh ovh      30348 Jan 30 07:10 run_speech_recognition_ctc.py\n"
     ]
    }
   ],
   "source": [
    "!wget -O eval.py https://raw.githubusercontent.com/huggingface/transformers/master/examples/research_projects/robust-speech-event/eval.py\n",
    "!cp eval.py wav2vec2-large-xls-r-300m-irish\n",
    "!cp run_speech_recognition_ctc.py wav2vec2-large-xls-r-300m-irish\n",
    "!ls -ltr wav2vec2-large-xls-r-300m-irish"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {
    "id": "OLB-MXricSec",
    "outputId": "784016e5-2c0a-4235-b432-96bf126b33ba"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp-a34b3233.so.1 library.\n",
      "\tTry to import numpy first or set the threading layer accordingly. Set MKL_SERVICE_FORCE_INTEL to force it.\n"
     ]
    }
   ],
   "source": [
    "!cd wav2vec2-large-xls-r-300m-i;python eval.py \\\n",
    "    --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config kmr --split test --log_outputs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {
    "id": "aoMHnv5ocSec"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp-a34b3233.so.1 library.\n",
      "\tTry to import numpy first or set the threading layer accordingly. Set MKL_SERVICE_FORCE_INTEL to force it.\n"
     ]
    }
   ],
   "source": [
    "!cd wav2vec2-large-xls-r-300m-irish; python eval.py \\\n",
    "    --model_id ./ --dataset speech-recognition-community-v2/dev_data \\\n",
    "    --config kmr --split validation --chunk_length_s 10 --stride_length_s 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "referenced_widgets": [
      "24592b0be30e4eafb1949cf09d1c4fb4",
      "f9bf2ab0d2fa4d3f9235cc6d1ab772f1",
      "b0791474a34043da8057e06741472ade",
      "1ccbd582d616458b87c76ac8dc5b6b36"
     ]
    },
    "id": "5vvo9g7HcSec",
    "outputId": "c2cab8b0-2b67-4039-b8ca-9ab13c9629c3"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "24592b0be30e4eafb1949cf09d1c4fb4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/260 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f9bf2ab0d2fa4d3f9235cc6d1ab772f1",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/574 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b0791474a34043da8057e06741472ade",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/23.0 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1ccbd582d616458b87c76ac8dc5b6b36",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/309 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# from transformers import AutoModelForCTC, Wav2Vec2Processor\n",
    "\n",
    "# model = AutoModelForCTC.from_pretrained(\"infinitejoy/wav2vec2-large-xls-r-300m-bashkir\")\n",
    "# processor = Wav2Vec2Processor.from_pretrained(\"infinitejoy/wav2vec2-large-xls-r-300m-bashkir\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "referenced_widgets": [
      "013fabff2ea243a0a728a79b8f54ae09",
      "a8d9ca6d024f46f58301bfbcc475e41a",
      "b336e2647c05466d87a11dfa326e30d6",
      "8e6962320ad944439261482617be4869",
      "99de2ef750aa49fd986965d66853a5ea",
      "765670f93e5f4c2e849c98d53e616f38",
      "812abafc8f6b49e3a498718d034a379b"
     ]
    },
    "id": "9yVf94nEcSec",
    "outputId": "60fbb3b8-692c-4418-c222-c734e48c4db1"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "013fabff2ea243a0a728a79b8f54ae09",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/1.99k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a8d9ca6d024f46f58301bfbcc475e41a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/1.18G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b336e2647c05466d87a11dfa326e30d6",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/212 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8e6962320ad944439261482617be4869",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/260 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "99de2ef750aa49fd986965d66853a5ea",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/520 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "765670f93e5f4c2e849c98d53e616f38",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/23.0 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "812abafc8f6b49e3a498718d034a379b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/309 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "AssertionError",
     "evalue": "55",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mAssertionError\u001b[0m                            Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-23-c6863db4730f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[0mlogits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlogits\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlogits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;31mAssertionError\u001b[0m: 55"
     ]
    }
   ],
   "source": [
    "# from transformers import AutoModelForCTC, AutoProcessor\n",
    "# from datasets import load_dataset\n",
    "\n",
    "# model = AutoModelForCTC.from_pretrained(\"infinitejoy/wav2vec2-large-xls-r-300m-bashkir\")\n",
    "# processor = AutoProcessor.from_pretrained(\"infinitejoy/wav2vec2-large-xls-r-300m-bashkir\")\n",
    "\n",
    "# input_values = processor(common_voice_test[0][\"audio\"][\"array\"], return_tensors=\"pt\", sampling_rate=16_000).input_values\n",
    "# # input_values = input_values.to(\"cuda\")\n",
    "\n",
    "# logits = model(input_values).logits\n",
    "\n",
    "# assert logits.shape[-1] == 32, logits.shape[-1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "colab": {
     "referenced_widgets": [
      "42ac3a57a96b4987b0c62aa41aa13702",
      "29dbfe94c1e9436ea3feefd9a7ba5d34",
      "acd0b1dccad24943bf760273d89aced3"
     ]
    },
    "id": "z26_Ce-kcSed",
    "outputId": "fb46fc7b-5450-4d76-e2cb-3b6417133d44"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/lv/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b)\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "81d295b921134614b692ce51d86e1fda",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/1.99k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d618ab22d4eb4d34b2b1617e90b5aa65",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/212 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8662d18dadf14176b7fa000759f024bd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/1.18G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c7fa500c0af44fa5a606d356e44821a7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/293 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d56ae9108d3d423fa9a346f224cc9a4a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/342 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e46d33d2cbd24556936476c45c4303d9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/23.0 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4b32d601a20941129c3ab246c3d817ca",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/502 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2bae0dc8d53349cf94dee689641a192c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/10 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['nebija nekā tīra ko uzvilkt', 'cēlonis tam ne viens vien', 'visi vilki nav pelēki', 'iedzert aukstu alu būtu labi', 'vai mani mati bija glīti', 'lēnām nesasteidz', 'nerunā man rupjības', 'es vairs nevaru būt tavs elks', 'es atradu mūsu zemes gabalu', 'ko tas sīkais sūds ar mani darītu']\n",
      "['Nebija nekā tīra, ko uzvilkt?', 'Cēlonis tam - ne viens vien.', 'Visi vilki nav pelēki.', 'Iedzert aukstu alu būtu labi.', 'Vai mani mati bija glīti?', 'Lēnām, nesasteidz.', 'Nerunā man rupjības.', 'Es vairs nevaru būt tavs elks.', 'Es atradu mūsu zemes gabalu.', 'Ko tas sīkais sūds ar mani darītu?']\n"
     ]
    }
   ],
   "source": [
    "from datasets import Audio, Dataset, load_dataset, load_metric\n",
    "from transformers import AutoFeatureExtractor, pipeline\n",
    "\n",
    "dataset = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"lv\", use_auth_token=True, split=\"train+validation\")\n",
    "\n",
    "# for testing: only process the first two examples as a test\n",
    "dataset = dataset.select(range(10))\n",
    "\n",
    "repo_name = 'infinitejoy/wav2vec2-large-xls-r-300m-latvian'\n",
    "\n",
    "# load processor\n",
    "feature_extractor = AutoFeatureExtractor.from_pretrained(repo_name)\n",
    "# feature_extractor = processor_with_lm.feature_extractor\n",
    "sampling_rate = feature_extractor.sampling_rate\n",
    "\n",
    "# resample audio\n",
    "dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=sampling_rate))\n",
    "\n",
    "# load eval pipeline\n",
    "asr = pipeline(\"automatic-speech-recognition\", model=repo_name, feature_extractor=feature_extractor)\n",
    "\n",
    "# map function to decode audio\n",
    "def map_to_pred(batch):\n",
    "    prediction = asr(\n",
    "        batch[\"audio\"][\"array\"])\n",
    "\n",
    "    batch[\"prediction\"] = prediction[\"text\"]\n",
    "    batch[\"target\"] = batch[\"sentence\"]\n",
    "    return batch\n",
    "\n",
    "# run inference on all examples\n",
    "result = dataset.map(map_to_pred, remove_columns=dataset.column_names)\n",
    "print(result[\"prediction\"])\n",
    "\n",
    "print(result['target'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "id": "W0ajacuBcSed"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"e'ess' qted j'ms' ' ɓ'jhm s' s'm' jtj' jtr'm 'v' ɓ'x'\""
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result[0][\"prediction\"].replace('[UNK]', '')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "name": "hausa_training_script.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "002decc6fb504205ae9f61a4871e1532": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "00a1878e3cda42e1982093e185935937": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "00a619827a094be4ae891726e44ddd97": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "0120e6cb1edc429ebf0a6437dc3378fe": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_16dd9300014545caa901274f385e6a91",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_20d3b7a6a43143419d9cb64e557b3acc",
      "value": 1
     }
    },
    "05d04f345a3148dd9053a5d524592333": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "06ec543be0a34943959c3140119c4d6e": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "07447e6083b04bfeb04e5a601fe475bd": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "07b40214652e48adbae525787288795d": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "0b83a8775ea1441980d8ba945be752fe": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "0be3f91b1071464d979c0c59baff32f4": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_209d975f5d4e4300bf01bb6b2472d493",
      "max": 49716,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_4b2562825d8e4c5484008cd054e01216",
      "value": 49716
     }
    },
    "0c8b1327b27449a49f9b71fdc80d831c": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_1e7f593023d544e1afe46359567abfca",
      "placeholder": "​",
      "style": "IPY_MODEL_cb8b0320a4794b278f86c33bbfc9825f",
      "value": ""
     }
    },
    "0d0ab06d275d49f5b1ac57b28c53c158": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_a27c1dd0b5c447058bf8abde274d7085",
      "placeholder": "​",
      "style": "IPY_MODEL_9cce7704e9e74588aa7aa3b9ddf9672f",
      "value": " 1324/0 [00:01&lt;00:00, 1353.56 examples/s]"
     }
    },
    "0e1672eeb5244df9bf0cbd095625d68a": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "0f6b3cf1d33f46f594934874170bcd83": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "127389ec566e423ab9a8f60a9d61caaa": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "TextModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "TextModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "TextView",
      "continuous_update": true,
      "description": "Username:",
      "description_tooltip": null,
      "disabled": false,
      "layout": "IPY_MODEL_e549178ba75f4939aba6ae1cf743722a",
      "placeholder": "​",
      "style": "IPY_MODEL_0f6b3cf1d33f46f594934874170bcd83",
      "value": "infinitejoy"
     }
    },
    "138580d9724141448ff8a5e11ef415ce": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "14eb779636914797867b7315f347839d": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_c319fa946f3e4380864aed6d3fbb77e7",
      "placeholder": "​",
      "style": "IPY_MODEL_2e918f153be0489dbf0ad64bc45c563c",
      "value": " 30/0 [00:00&lt;00:00, 131.50 examples/s]"
     }
    },
    "155de8f44ddf4021a5d1d4d4968934db": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_efd0fc9b3766457484533a6eb59f2cd4",
      "max": 63636525,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_4c316c3eddd64af1b4d892516e1ced03",
      "value": 63636525
     }
    },
    "16dd9300014545caa901274f385e6a91": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "173c6246acdb4a3bbf6dce2e236499a2": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "1795d07714684311b1ccea7514f298e4": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "19630b62bebe4a8f9e775e59ee46fb9c": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "19b70fdd00dc47f8b79f0d3acc68d11a": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "1a03059af7bb40da924ecf3e709d7e0d": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "1e7f593023d544e1afe46359567abfca": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "1ee70ac9891d4104ad801f75b4081c9f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_f56579df97b94a5a8b3a0fbf32905687",
       "IPY_MODEL_aee17658cd4b4fe49a759ad6c9d5a576",
       "IPY_MODEL_3a6e34083c8f4066a6718c957958cfa6"
      ],
      "layout": "IPY_MODEL_eda7343054624f4d8a2e2b981b4fab41"
     }
    },
    "209d975f5d4e4300bf01bb6b2472d493": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "20d3b7a6a43143419d9cb64e557b3acc": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "21c9c4302a76449784f314c15ca59bea": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_820d84c1afc7416e9368a246ab8d5ce9",
      "placeholder": "​",
      "style": "IPY_MODEL_90b3e47068e747c7be958d22fb56fe4f",
      "value": ""
     }
    },
    "24aeaf260d2240d08466c5e3a01d95cb": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "25142b9649ef403c8b37cdb7f9a8de4b": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_ae5b0f9f37e44e8e965f7e20dfdf3bfa",
      "max": 2984,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_2fbc062ac19f4eb7a8adff2a5118bea4",
      "value": 2984
     }
    },
    "256669df6862481cbd0bbcee229e2efe": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "25a5802292874e49bb42a1489ff54b31": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "27d72d36fe604e5d96d6a979ed6d50ee": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "2ac4df7918404aed92611750471cd85f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "2d251c97292c4824a6cb218548c17353": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_7092d73471c44875b496924bc82858df",
      "placeholder": "​",
      "style": "IPY_MODEL_95c3ba1f3cef4ca887dd8461db595c0a",
      "value": ""
     }
    },
    "2d63896d07f64d91abb45c257ace72db": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "2d96a892d0a94a89b756e23ff19a1c1f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "2de6d3927c534397ab122a9cf6332a33": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_4da0d9054bd74fb2a77bb40371c99a7b",
      "placeholder": "​",
      "style": "IPY_MODEL_639f180d5e02425dba7d4c4bca07c59b",
      "value": ""
     }
    },
    "2e918f153be0489dbf0ad64bc45c563c": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "2ec6b96f3d8449c08a8b62b85ccb57dc": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "2fbc062ac19f4eb7a8adff2a5118bea4": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "2fedf1edcc184d9b8c67712511f8bfef": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_7365cf85ddff4b26a27c9b797c573949",
      "placeholder": "​",
      "style": "IPY_MODEL_7340567ea42d42709f8099a249f6b5dd",
      "value": "Downloading: 100%"
     }
    },
    "30afb513746845b481227b3191df4c90": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "311cbd6bf6df4c35b7819e49fb55a562": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_c4b226675ad84ff29f62847767065469",
       "IPY_MODEL_0be3f91b1071464d979c0c59baff32f4",
       "IPY_MODEL_7c4a653d81474818b084b71657f71e0f"
      ],
      "layout": "IPY_MODEL_3bc2760daaa346b2b20d76d6cf4ed336"
     }
    },
    "315ae5446f264660bbe6119e8261495d": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "info",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_ee80362b77ef4375bb931af34bc16d07",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_0e1672eeb5244df9bf0cbd095625d68a",
      "value": 0
     }
    },
    "32eb83bb6fd34c56bb345368e47e8f6f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_aa47a09bf444413ba95322d979c1908c",
      "placeholder": "​",
      "style": "IPY_MODEL_ce8bb7d0fb744e7b9ce2ff35cfdbc679",
      "value": "<center>\n<img src=https://huggingface.co/front/assets/huggingface_logo-noborder.svg alt='Hugging Face'>\n<br>\n<b>The AI community building the future</b>\n<br>\nImmediately click login after typing your password or it might be stored in plain text in this notebook file.\n</center>"
     }
    },
    "33fffaf4bc4a405187a2dd4eaa7ffc67": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "34417f648cd54ed5b6d91f53af3e2713": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_127389ec566e423ab9a8f60a9d61caaa",
       "IPY_MODEL_4e4bc5550505497ba35f6bd7dde2893f"
      ],
      "layout": "IPY_MODEL_0b83a8775ea1441980d8ba945be752fe"
     }
    },
    "352fc0a527024af8a284c53f4d521fec": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "36db5c636fcf46518685b91a168d9c11": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "37bdb17bf4734fd4b92759c874a4d4b8": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_776dc15d8836456281084dc154d769e4",
      "placeholder": "​",
      "style": "IPY_MODEL_c139ed75ff4d47d593f8cb5f3fa4c105",
      "value": " 9.88k/9.88k [00:00&lt;00:00, 9.35kB/s]"
     }
    },
    "3a6e34083c8f4066a6718c957958cfa6": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_7a68ba6f90a24162a973ba5146c2f546",
      "placeholder": "​",
      "style": "IPY_MODEL_05d04f345a3148dd9053a5d524592333",
      "value": " 134/0 [00:00&lt;00:00, 369.59 examples/s]"
     }
    },
    "3bc2760daaa346b2b20d76d6cf4ed336": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "3c36f662c44e453ca935753e6dc18060": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "info",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_00a1878e3cda42e1982093e185935937",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_42bb543380e14d859f42e966b3c54bc2",
      "value": 1
     }
    },
    "3db73d64f4e54cad8f8cd0f5facc33c0": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "3f8a5e226fbf4175b4fa7f39a2a9d290": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "41515b22976648aabe660b8df3506c4c": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "4256584d0f934678901c4c1ac7f73d42": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_c87e36307bf84cf4970afce9e496117d",
      "placeholder": "​",
      "style": "IPY_MODEL_2d96a892d0a94a89b756e23ff19a1c1f",
      "value": "100%"
     }
    },
    "42bb543380e14d859f42e966b3c54bc2": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "43a3718f19944ea7bda27a96e3816a78": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_8137d055bfd14a058a8755d00e5fe260",
       "IPY_MODEL_6fa1c2f06d0c43c38c76a7ace7c178a5",
       "IPY_MODEL_d8593055a0ea45f5ab13377c18e2b1e0"
      ],
      "layout": "IPY_MODEL_2ec6b96f3d8449c08a8b62b85ccb57dc"
     }
    },
    "4407f3810d5d4820acf8db794ce305e6": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_256669df6862481cbd0bbcee229e2efe",
      "placeholder": "​",
      "style": "IPY_MODEL_90bde27c6e564ca285a65d6b594d6865",
      "value": ""
     }
    },
    "46031a26e4ff42819f1169eb07718b46": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "4685ef4f82764fada48035b4de9af9e2": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "478464758f2b455bb8848ef4046ed11d": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "49aa86ddf29944b281b830b99e1ac4fe": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "49f46100f43346d2bdb402e2fd1a1951": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "4b2562825d8e4c5484008cd054e01216": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "4c316c3eddd64af1b4d892516e1ced03": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "4da0d9054bd74fb2a77bb40371c99a7b": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "4e4bc5550505497ba35f6bd7dde2893f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "PasswordModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "PasswordModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "PasswordView",
      "continuous_update": true,
      "description": "Password:",
      "description_tooltip": null,
      "disabled": false,
      "layout": "IPY_MODEL_7d3231a0b7794b11af662170b352d9e0",
      "placeholder": "​",
      "style": "IPY_MODEL_9c28978adf974326a21259ae56f47fe9",
      "value": ""
     }
    },
    "4f4d422bdd49486c940713c19e754479": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "50862512d9c14dbd92f8cc3d795d4cd2": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_67653ac95966464994b1e0a889cfc5d9",
       "IPY_MODEL_778d0a9a7de243eba8dd1c0caf3aa82e",
       "IPY_MODEL_14eb779636914797867b7315f347839d"
      ],
      "layout": "IPY_MODEL_352fc0a527024af8a284c53f4d521fec"
     }
    },
    "50a1252082d942b09bfc620a9fa9d1d0": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "VBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "VBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "VBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_32eb83bb6fd34c56bb345368e47e8f6f",
       "IPY_MODEL_34417f648cd54ed5b6d91f53af3e2713",
       "IPY_MODEL_7518572223ac480b89af2ab71f38b2ed"
      ],
      "layout": "IPY_MODEL_e270b7c82f784ebbbba4b17fb07c310d"
     }
    },
    "557ddd52295c43a69b6fd2689edb46b4": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_4256584d0f934678901c4c1ac7f73d42",
       "IPY_MODEL_0120e6cb1edc429ebf0a6437dc3378fe",
       "IPY_MODEL_d9c616f1d67c4590a55bf797d8ab1904"
      ],
      "layout": "IPY_MODEL_19630b62bebe4a8f9e775e59ee46fb9c"
     }
    },
    "57e054662b5d497b8e1f3d99fb72034f": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "5e2e7ad6aa8f4f51adf7f6376b84f618": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "61771b0bdfe543b88fc8673a510a986c": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "61ac7115c9b24ebb855343cc01b1d3f4": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_1a03059af7bb40da924ecf3e709d7e0d",
      "placeholder": "​",
      "style": "IPY_MODEL_138580d9724141448ff8a5e11ef415ce",
      "value": " 1386/? [00:00&lt;00:00, 3063.39ex/s]"
     }
    },
    "639f180d5e02425dba7d4c4bca07c59b": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "63d4b794d9df49c6ab6f77f10a76861d": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "64b970adf3af40268fb60e38140157e2": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_f49c5c9c58ee482a8264e422d4610a8a",
      "placeholder": "​",
      "style": "IPY_MODEL_fed5fdea500f46618789c44aef2bff3b",
      "value": " 0/0 [00:00&lt;?, ? examples/s]"
     }
    },
    "67653ac95966464994b1e0a889cfc5d9": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_89a05d4149534d78935e169c6623f458",
      "placeholder": "​",
      "style": "IPY_MODEL_25a5802292874e49bb42a1489ff54b31",
      "value": ""
     }
    },
    "67d3fcb0869a4485b24846d3b1e34fca": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_d434124da4654ada92573070353dbce1",
       "IPY_MODEL_3c36f662c44e453ca935753e6dc18060",
       "IPY_MODEL_0d0ab06d275d49f5b1ac57b28c53c158"
      ],
      "layout": "IPY_MODEL_3db73d64f4e54cad8f8cd0f5facc33c0"
     }
    },
    "690f71c3c232421c8cd92a28b5435b55": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "6a9e0e280ef7493eb4557429d6f53685": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_2de6d3927c534397ab122a9cf6332a33",
       "IPY_MODEL_f3891dcc62b74ccd8d5a61b0ca761b2a",
       "IPY_MODEL_9958cd546fbe477092527a14bb3bfe21"
      ],
      "layout": "IPY_MODEL_c51fb67419ed47f98c5ed4ad4e33aeff"
     }
    },
    "6b8769a26838449e9d7d45fc5cc7a6f6": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "6e1517cd2bed4a35b52de6cdc812b75c": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "6fa1c2f06d0c43c38c76a7ace7c178a5": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_49aa86ddf29944b281b830b99e1ac4fe",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_a33fe3bf150949fd9679ff1fe91d4433",
      "value": 1
     }
    },
    "7092d73471c44875b496924bc82858df": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "72fee1a44b5343a7add71c9649139317": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_57e054662b5d497b8e1f3d99fb72034f",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_07b40214652e48adbae525787288795d",
      "value": 1
     }
    },
    "7340567ea42d42709f8099a249f6b5dd": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "7365cf85ddff4b26a27c9b797c573949": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "7518572223ac480b89af2ab71f38b2ed": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ButtonModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ButtonModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ButtonView",
      "button_style": "",
      "description": "Login",
      "disabled": false,
      "icon": "",
      "layout": "IPY_MODEL_e410e7aecf23433f880a0f7169a8ce97",
      "style": "IPY_MODEL_e5124c5171e04625b70795e4b7a18819",
      "tooltip": ""
     }
    },
    "776dc15d8836456281084dc154d769e4": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "778d0a9a7de243eba8dd1c0caf3aa82e": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "info",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_5e2e7ad6aa8f4f51adf7f6376b84f618",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_49f46100f43346d2bdb402e2fd1a1951",
      "value": 1
     }
    },
    "781d2e3803574e2c841acfd1e090b84f": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "7a68ba6f90a24162a973ba5146c2f546": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "7bf164fec94c40858cf5280937f8e00a": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "7c34d36b28e54989b0c509eae1bd9a0f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_cf1afb1025d24c1cbbb1eefd26535a26",
       "IPY_MODEL_f347c0838adf462d886a4ae36a3a6b41",
       "IPY_MODEL_37bdb17bf4734fd4b92759c874a4d4b8"
      ],
      "layout": "IPY_MODEL_eba629a92467433c92840e4450e7a937"
     }
    },
    "7c4a653d81474818b084b71657f71e0f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_4f4d422bdd49486c940713c19e754479",
      "placeholder": "​",
      "style": "IPY_MODEL_690f71c3c232421c8cd92a28b5435b55",
      "value": " 49.7k/49.7k [00:00&lt;00:00, 5.02kB/s]"
     }
    },
    "7d3231a0b7794b11af662170b352d9e0": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "7fa8f65c508e4e629b1a2212aaa64ebc": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "8137d055bfd14a058a8755d00e5fe260": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_fe412730e037441b961a664573d02ae7",
      "placeholder": "​",
      "style": "IPY_MODEL_85ff02f4cd7141a4aba5e1e83bb144d2",
      "value": "100%"
     }
    },
    "8148f4330d0f441998d9a3ca4942bc22": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "81a7889575ed4e0293f7ce56032e6edb": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "820d84c1afc7416e9368a246ab8d5ce9": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "822d95bb43c44a4394441d92e25120d7": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "832b4fcaf152402e84bfdaf9833d061f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "85ff02f4cd7141a4aba5e1e83bb144d2": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "89a05d4149534d78935e169c6623f458": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "8aaba2878c2c484e8fbf9d81354f924f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_19b70fdd00dc47f8b79f0d3acc68d11a",
      "placeholder": "​",
      "style": "IPY_MODEL_d43443cf2579467a9cc3e9f05c607615",
      "value": " 1386/? [00:00&lt;00:00, 3192.10ex/s]"
     }
    },
    "8af6a305cc8a4a038f74f39e6ea8f040": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "8f5cd0e3111241b8a61914dac82acf73": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_06ec543be0a34943959c3140119c4d6e",
      "placeholder": "​",
      "style": "IPY_MODEL_24aeaf260d2240d08466c5e3a01d95cb",
      "value": " 2.98k/2.98k [00:00&lt;00:00, 6.54kB/s]"
     }
    },
    "90b3e47068e747c7be958d22fb56fe4f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "90bde27c6e564ca285a65d6b594d6865": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "95c3ba1f3cef4ca887dd8461db595c0a": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "992b23b615fb4e88a92782c64ad60cc2": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_0c8b1327b27449a49f9b71fdc80d831c",
       "IPY_MODEL_c22392fb7cf0489caf741568e796fc9d",
       "IPY_MODEL_b17ceb2a58d64747aafd29836e681e02"
      ],
      "layout": "IPY_MODEL_46031a26e4ff42819f1169eb07718b46"
     }
    },
    "9958cd546fbe477092527a14bb3bfe21": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_6b8769a26838449e9d7d45fc5cc7a6f6",
      "placeholder": "​",
      "style": "IPY_MODEL_b2a72b0caf104aee8dd95bff01cc52a4",
      "value": " 848/0 [00:00&lt;00:00, 1414.45 examples/s]"
     }
    },
    "9b22b13729bf4f20b8b96da540cfaa3f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_00a619827a094be4ae891726e44ddd97",
      "placeholder": "​",
      "style": "IPY_MODEL_81a7889575ed4e0293f7ce56032e6edb",
      "value": " 149/? [00:00&lt;00:00, 1609.27ex/s]"
     }
    },
    "9c28978adf974326a21259ae56f47fe9": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "9cce7704e9e74588aa7aa3b9ddf9672f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "9ea974dfe1184fe3897a7d9d031c7624": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "a27c1dd0b5c447058bf8abde274d7085": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "a33fe3bf150949fd9679ff1fe91d4433": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "a4411af1dda24dec9b863793ccd22390": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_ee8a677f68a147e5b10a35518616e264",
       "IPY_MODEL_315ae5446f264660bbe6119e8261495d",
       "IPY_MODEL_64b970adf3af40268fb60e38140157e2"
      ],
      "layout": "IPY_MODEL_f085643a56b94b74bb7e883598170f01"
     }
    },
    "a968de55d2e148f88084ac96444c17ee": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "aa47a09bf444413ba95322d979c1908c": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "aab799184cf8453e9cf026a32abff619": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "ae51183c24fe42809d080fd15c298f92": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "ae5b0f9f37e44e8e965f7e20dfdf3bfa": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "aee17658cd4b4fe49a759ad6c9d5a576": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "info",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_c0aeab2086de4ca7ad8b5f0bbcde009c",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_a968de55d2e148f88084ac96444c17ee",
      "value": 1
     }
    },
    "af14186997de449f997936a81d69876b": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "b17ceb2a58d64747aafd29836e681e02": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_ce845667dcf54353b02299f85dcda29d",
      "placeholder": "​",
      "style": "IPY_MODEL_478464758f2b455bb8848ef4046ed11d",
      "value": " 149/? [00:00&lt;00:00, 1769.20ex/s]"
     }
    },
    "b2a72b0caf104aee8dd95bff01cc52a4": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "b9d888877a7e4a24b07f4fb91ceda179": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_4407f3810d5d4820acf8db794ce305e6",
       "IPY_MODEL_72fee1a44b5343a7add71c9649139317",
       "IPY_MODEL_9b22b13729bf4f20b8b96da540cfaa3f"
      ],
      "layout": "IPY_MODEL_36db5c636fcf46518685b91a168d9c11"
     }
    },
    "c0aeab2086de4ca7ad8b5f0bbcde009c": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "c139ed75ff4d47d593f8cb5f3fa4c105": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "c22392fb7cf0489caf741568e796fc9d": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_173c6246acdb4a3bbf6dce2e236499a2",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_33fffaf4bc4a405187a2dd4eaa7ffc67",
      "value": 1
     }
    },
    "c319fa946f3e4380864aed6d3fbb77e7": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "c4b226675ad84ff29f62847767065469": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_ec67f65de50b4038ac3b01496ef56f98",
      "placeholder": "​",
      "style": "IPY_MODEL_cb10ec01c16a4c50bf8e4c8aec491aa2",
      "value": "Downloading: 100%"
     }
    },
    "c51fb67419ed47f98c5ed4ad4e33aeff": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "c6c51e30cbb1472f9e1a49bc0f5bb2cc": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "c7017ddc94104c27b42658f27f275908": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_8af6a305cc8a4a038f74f39e6ea8f040",
      "placeholder": "​",
      "style": "IPY_MODEL_832b4fcaf152402e84bfdaf9833d061f",
      "value": "Downloading: 100%"
     }
    },
    "c87e36307bf84cf4970afce9e496117d": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "cb10ec01c16a4c50bf8e4c8aec491aa2": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "cb3b32862a12486f8625d667bb45c368": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_f90669ec059249ca81a0e2c5891834db",
      "placeholder": "​",
      "style": "IPY_MODEL_27d72d36fe604e5d96d6a979ed6d50ee",
      "value": " 63.6M/63.6M [00:03&lt;00:00, 35.4MB/s]"
     }
    },
    "cb8b0320a4794b278f86c33bbfc9825f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "ce845667dcf54353b02299f85dcda29d": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "ce8bb7d0fb744e7b9ce2ff35cfdbc679": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "cf1afb1025d24c1cbbb1eefd26535a26": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_aab799184cf8453e9cf026a32abff619",
      "placeholder": "​",
      "style": "IPY_MODEL_4685ef4f82764fada48035b4de9af9e2",
      "value": "Downloading: 100%"
     }
    },
    "d434124da4654ada92573070353dbce1": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_63d4b794d9df49c6ab6f77f10a76861d",
      "placeholder": "​",
      "style": "IPY_MODEL_61771b0bdfe543b88fc8673a510a986c",
      "value": ""
     }
    },
    "d43443cf2579467a9cc3e9f05c607615": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "d8426e73abce4cbaa58a89aef1fce8b7": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_21c9c4302a76449784f314c15ca59bea",
       "IPY_MODEL_fcc23e29fde64cde92f2ae57d7cabd78",
       "IPY_MODEL_61ac7115c9b24ebb855343cc01b1d3f4"
      ],
      "layout": "IPY_MODEL_ae51183c24fe42809d080fd15c298f92"
     }
    },
    "d8593055a0ea45f5ab13377c18e2b1e0": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_6e1517cd2bed4a35b52de6cdc812b75c",
      "placeholder": "​",
      "style": "IPY_MODEL_efb5e6e4970f43d1b6197e4aaedac0b7",
      "value": " 1/1 [00:00&lt;00:00,  8.08ba/s]"
     }
    },
    "d9c616f1d67c4590a55bf797d8ab1904": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_002decc6fb504205ae9f61a4871e1532",
      "placeholder": "​",
      "style": "IPY_MODEL_c6c51e30cbb1472f9e1a49bc0f5bb2cc",
      "value": " 1/1 [00:00&lt;00:00, 19.32ba/s]"
     }
    },
    "da3f94cc1140466cbcbdb3e03cbea8c2": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "e106fee906b8408ebba822b4ff70693f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_2d251c97292c4824a6cb218548c17353",
       "IPY_MODEL_fcf8a57a02ec44398b95f4a64ad2f0fe",
       "IPY_MODEL_8aaba2878c2c484e8fbf9d81354f924f"
      ],
      "layout": "IPY_MODEL_af14186997de449f997936a81d69876b"
     }
    },
    "e270b7c82f784ebbbba4b17fb07c310d": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": "center",
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": "flex",
      "flex": null,
      "flex_flow": "column",
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "50%"
     }
    },
    "e410e7aecf23433f880a0f7169a8ce97": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "e5124c5171e04625b70795e4b7a18819": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ButtonStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ButtonStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "button_color": null,
      "font_weight": ""
     }
    },
    "e549178ba75f4939aba6ae1cf743722a": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "e5d1a213afc04270926da41e12b30362": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_c7017ddc94104c27b42658f27f275908",
       "IPY_MODEL_155de8f44ddf4021a5d1d4d4968934db",
       "IPY_MODEL_cb3b32862a12486f8625d667bb45c368"
      ],
      "layout": "IPY_MODEL_30afb513746845b481227b3191df4c90"
     }
    },
    "eba629a92467433c92840e4450e7a937": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "ec67f65de50b4038ac3b01496ef56f98": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "eda7343054624f4d8a2e2b981b4fab41": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "ee80362b77ef4375bb931af34bc16d07": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "ee8a677f68a147e5b10a35518616e264": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_7bf164fec94c40858cf5280937f8e00a",
      "placeholder": "​",
      "style": "IPY_MODEL_2ac4df7918404aed92611750471cd85f",
      "value": ""
     }
    },
    "efb5e6e4970f43d1b6197e4aaedac0b7": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "efd0fc9b3766457484533a6eb59f2cd4": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "f085643a56b94b74bb7e883598170f01": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "f347c0838adf462d886a4ae36a3a6b41": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_7fa8f65c508e4e629b1a2212aaa64ebc",
      "max": 9880,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_1795d07714684311b1ccea7514f298e4",
      "value": 9880
     }
    },
    "f3891dcc62b74ccd8d5a61b0ca761b2a": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "info",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_41515b22976648aabe660b8df3506c4c",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_3f8a5e226fbf4175b4fa7f39a2a9d290",
      "value": 1
     }
    },
    "f3a862eb1219484b8d9381fb0d16b063": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_2fedf1edcc184d9b8c67712511f8bfef",
       "IPY_MODEL_25142b9649ef403c8b37cdb7f9a8de4b",
       "IPY_MODEL_8f5cd0e3111241b8a61914dac82acf73"
      ],
      "layout": "IPY_MODEL_da3f94cc1140466cbcbdb3e03cbea8c2"
     }
    },
    "f49c5c9c58ee482a8264e422d4610a8a": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "f56579df97b94a5a8b3a0fbf32905687": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_9ea974dfe1184fe3897a7d9d031c7624",
      "placeholder": "​",
      "style": "IPY_MODEL_8148f4330d0f441998d9a3ca4942bc22",
      "value": ""
     }
    },
    "f90669ec059249ca81a0e2c5891834db": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "fcc23e29fde64cde92f2ae57d7cabd78": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_822d95bb43c44a4394441d92e25120d7",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_07447e6083b04bfeb04e5a601fe475bd",
      "value": 1
     }
    },
    "fcf8a57a02ec44398b95f4a64ad2f0fe": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_781d2e3803574e2c841acfd1e090b84f",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_2d63896d07f64d91abb45c257ace72db",
      "value": 1
     }
    },
    "fe412730e037441b961a664573d02ae7": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "fed5fdea500f46618789c44aef2bff3b": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    }
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}