--- library_name: transformers base_model: meta-llama/Llama-3.1-70B-Instruct datasets: - infly/INF-ORM-Preference-Magnitude-80K pipeline_tag: text-classification --- # INF Outcome Reward Model ## Introduction [**INF-ORM-Llama3.1-70B**](https://huggingface.co/Skywork/Skywork-Reward-Gemma-2-27B-v0.2) is the outcome reward model roughly built on the [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) architecture and trained with the dataset [INF-ORM-Preference-Magnitude-80K](https://huggingface.co/datasets/infly/INF-ORM-Preference-Magnitude-80K). **Note: Train Details are coming soon!** ## RewardBench Leaderboard We evaluate our model on [RewardBench](https://huggingface.co/spaces/allenai/reward-bench) using the [official test script](https://github.com/allenai/reward-bench) locally. As of December 2024, INF-ORM-Llama3.1-70B ranks first on the RewardBench leaderboard. | Rank | Model | Model Type | Score | Chat | Chat Hard | Safety | Reasoning | | :---: | -------------------------------------------- | ----------------- | :---: | :---: | :-------: | :----: | :-------: | | 1 | **infly/INF-ORM-Llama3.1-70B** | Custom Classifier | 95.2 | 96.9 | 91.0 | 93.8 | 99.1 | | 2 | Skywork/Skywork-Reward-Gemma-2-27B-v0.2 | Seq. Classifier | 94.3 | 96.1 | 89.9 | 93.0 | 98.1 | | 3 | nvidia/Llama-3.1-Nemotron-70B-Reward | Custom Classifier | 94.1 | 97.5 | 85.7 | 95.1 | 98.1 | | 4 | Skywork/Skywork-Reward-Gemma-2-27B | Seq. Classifier | 93.8 | 95.8 | 91.4 | 91.9 | 96.1 | | 5 | SF-Foundation/TextEval-Llama3.1-70B | Generative | 93.5 | 94.1 | 90.1 | 93.2 | 96.4 | | 6 | meta-metrics/MetaMetrics-RM-v1.0 | Custom Classifier | 93.4 | 98.3 | 86.4 | 90.8 | 98.2 | | 7 | Skywork/Skywork-Critic-Llama-3.1-70B | Generative | 93.3 | 96.6 | 87.9 | 93.1 | 95.5 | | 8 | Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 | Seq. Classifier | 93.1 | 94.7 | 88.4 | 92.7 | 96.7 | | 9 | nicolinho/QRM-Llama3.1-8B | Seq. Classifier | 93.1 | 94.4 | 89.7 | 92.3 | 95.8 | | 10 | LxzGordon/URM-LLaMa-3.1-8B | Seq. Classifier | 92.9 | 95.5 | 88.2 | 91.1 | 97.0 | ## Demo Code We provide example usage of the Skywork reward model series below. Below is an example of obtaining the reward scores of two conversations. ```python from typing import List, Optional, Union import torch import torch.nn as nn from transformers import LlamaPreTrainedModel, LlamaModel, PreTrainedTokenizerFast from transformers.modeling_outputs import SequenceClassifierOutputWithPast class INFORMForSequenceClassification(LlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = LlamaModel(config) self.score = nn.Sequential( nn.Linear(config.hidden_size, config.hidden_size), nn.ReLU(), nn.Linear(config.hidden_size, self.num_labels) ) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) # Load model model_name = "infly/INF-ORM-Llama3.1-70B" orm = INFORMForSequenceClassification.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="flash_attention_2", num_labels=1, ) # Load tokenizer tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name) conv1 = [ { "content": "Tom has 20 oranges. He gave 5 oranges to his friend Lisa, then he bought 3 more oranges. Finally, he divided all the oranges equally among himself and his 4 friends. How many oranges does each person get?", "role": "user" }, { "content": "Tom has 20 oranges. He gave 5 oranges to Lisa. 20 - 5 = 15. Tom now has 15 oranges. Tom bought 3 more oranges. 15 + 3 = 18. Tom now has 18 oranges. Tom divides the 18 oranges equally among himself and his 4 friends (a total of 5 people). 18 ÷ 5 = 3.6 oranges. Each person gets 3.6 oranges.", "role": "assistant" } ] conv2= [ { "content": "Tom has 20 oranges. He gave 5 oranges to his friend Lisa, then he bought 3 more oranges. Finally, he divided all the oranges equally among himself and his 4 friends. How many oranges does each person get?", "role": "user" }, { "content": "Tom has 20 oranges. He gave 5 oranges to his friend Lisa. 20 - 5 = 15. Tom now has 15 oranges. Tom bought 3 more oranges. 15 + 3 = 18. Tom now has 18 oranges. Tom divides the 18 oranges equally among his 4 friends (a total of 4 people). 18 ÷ 4 = 4.5 oranges. Each person gets 4.5 oranges.", "role": "assistant" } ] conv1_tokenized = tokenizer.apply_chat_template(conv1, tokenize=True, return_tensors="pt").to("cuda") conv2_tokenized = tokenizer.apply_chat_template(conv2, tokenize=True, return_tensors="pt").to("cuda") # Inference with torch.no_grad(): score1 = orm(conv1_tokenized).logits[0][0].item() score2 = orm(conv2_tokenized).logits[0][0].item() print(f"Score for response 1: {score1}") print(f"Score for response 2: {score2}") # Output: # Score for response 1: 4.96875 # Score for response 2: 2.890625 ``` ## Declaration and License Agreement ### Declaration ### License Agreement ## Contact If you have any questions, please feel free to reach us at <23210720070@m.fudan.edu.cn>. ## Citation