ingisteinn commited on
Commit
ab6e42e
·
1 Parent(s): 18b1f14

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.89 +/- 13.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e49e9b700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e49e9b790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e49e9b820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e49e9b8b0>", "_build": "<function ActorCriticPolicy._build at 0x7f6e49e9b940>", "forward": "<function ActorCriticPolicy.forward at 0x7f6e49e9b9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e49e9ba60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e49e9baf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6e49e9bb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e49e9bc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e49e9bca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e49e9bd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6e49e94870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673390952250490511, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2JI71cb066UHYPNKu0di2j2uw6wOObswAAgD8AAIA/zQJYvMOpdrq6m2k6wN8eNq10yTrw3Ya5AACAPwAAgD/NWPU84V6PunXMnDqcPWg3F2X3OuA6SbkAAIA/AACAP7MROz2unZq6QOqButExyrQOekO62tyVOQAAgD8AAIA/cx+jPVz7NLqQVYS7jfhLOI/ePrs8ZYQ4AACAPwAAgD8A9JK7XF89usianrv8w7M0qrk0u1o3KrQAAIA/AACAPzNVUT2uUZW6Sb85PNvjRjwoJMU6SVktvQAAgD8AAIA/mmsGPY+CLbrZNLy4c5Whs+ToEDt6K983AACAPwAAgD+AjpW97FG6OB9uS7olKIS2cJYCux0XeDkAAAAAAACAPwAUurwpiA26sgPcuteU0LWoscc65q78OQAAgD8AAIA/ALSGvI/GHLr7cHy5QdeVtCEFUzqLe5I4AACAPwAAgD8ATd689sR9utTtDzriO4c1OXjAug+AJ7kAAIA/AACAP1r7sz2PPjK6nyOHOxKcQzg+qiI6Xq7DtwAAAAAAAIA/muHEu49uVrphIj06vPaptEvAU7vAlVm5AACAPwAAgD/mhhI9XG82uvIULjRvFr0vJoblunx9irMAAIA/AACAP5q9272PVji6QdrGOpEE3bRH6YW67m3luQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7UeKyLDGTECUhpRSlIwBbJRL+4wBdJRHQJORKmzjWCp1fZQoaAZoCWgPQwgLluoCXhZjQJSGlFKUaBVN6ANoFkdAk5Ws5n13+3V9lChoBmgJaA9DCFsnLserK2FAlIaUUpRoFU3oA2gWR0CTluilzltCdX2UKGgGaAloD0MIG3+ismGbZ0CUhpRSlGgVTegDaBZHQJOblBu4wyt1fZQoaAZoCWgPQwjJWdjTjlNjQJSGlFKUaBVN6ANoFkdAk50B7RfF73V9lChoBmgJaA9DCNi2KLNBhhBAlIaUUpRoFUv8aBZHQJOfQDA8B+51fZQoaAZoCWgPQwjwpfCg2cddQJSGlFKUaBVN6ANoFkdAk5/YqslsxnV9lChoBmgJaA9DCHukwW3tt2RAlIaUUpRoFU3oA2gWR0CTosL5RCQcdX2UKGgGaAloD0MI5lq0AO0ucUCUhpRSlGgVTfcCaBZHQJOqUa2nbZh1fZQoaAZoCWgPQwgH0O/7NxVRQJSGlFKUaBVLzWgWR0CTqqmoR7JGdX2UKGgGaAloD0MITRHg9C4ZZECUhpRSlGgVTegDaBZHQJPMhFEy+Ht1fZQoaAZoCWgPQwgZWMfxw1NhQJSGlFKUaBVN6ANoFkdAk8zIgmqo63V9lChoBmgJaA9DCLSQgNHl/V9AlIaUUpRoFU3oA2gWR0CTz24VymygdX2UKGgGaAloD0MICYuKOJ2XZUCUhpRSlGgVTegDaBZHQJPQl1RtP551fZQoaAZoCWgPQwg+WwcH+9FkQJSGlFKUaBVN6ANoFkdAk9Cn+l0o0HV9lChoBmgJaA9DCOfG9IQll2ZAlIaUUpRoFU3oA2gWR0CT0YIo3JgcdX2UKGgGaAloD0MIQG1UpwNpY0CUhpRSlGgVTegDaBZHQJPWdTDO1OV1fZQoaAZoCWgPQwhyio7k8tdgQJSGlFKUaBVN6ANoFkdAk9fx6jWTYHV9lChoBmgJaA9DCOHx7V2D7FJAlIaUUpRoFUvnaBZHQJPeUp9ZzPt1fZQoaAZoCWgPQwieXb714XhiQJSGlFKUaBVN6ANoFkdAk+KiPyTY/XV9lChoBmgJaA9DCAJKQ41ComdAlIaUUpRoFU3oA2gWR0CT49qDK5kLdX2UKGgGaAloD0MItqFinL/jbECUhpRSlGgVTccCaBZHQJPnR3JPqLV1fZQoaAZoCWgPQwgPfAxWnBRkQJSGlFKUaBVN6ANoFkdAk+irsa86FXV9lChoBmgJaA9DCFQ3F39bWmVAlIaUUpRoFU3oA2gWR0CT6icE/0NCdX2UKGgGaAloD0MIa0QwDi6HZ0CUhpRSlGgVTegDaBZHQJPs9gv114h1fZQoaAZoCWgPQwjVWpiF9t9iQJSGlFKUaBVN6ANoFkdAk/APYzzmOnV9lChoBmgJaA9DCL5QwHYw4WFAlIaUUpRoFU3oA2gWR0CT+LPn0TURdX2UKGgGaAloD0MIixagbTXOZECUhpRSlGgVTegDaBZHQJQct55Z8rt1fZQoaAZoCWgPQwggeedQhgxfQJSGlFKUaBVN6ANoFkdAlBzxgVoHs3V9lChoBmgJaA9DCPeUnBP7B2ZAlIaUUpRoFU3oA2gWR0CUH3OavzOHdX2UKGgGaAloD0MIkWKARJN3YkCUhpRSlGgVTegDaBZHQJQgmD0163R1fZQoaAZoCWgPQwiW0cjnlUxjQJSGlFKUaBVN6ANoFkdAlCCqLjxTbXV9lChoBmgJaA9DCLPqc7WVs2BAlIaUUpRoFU3oA2gWR0CUJnposZpBdX2UKGgGaAloD0MIlufB3VmcaECUhpRSlGgVTegDaBZHQJQoAnWrfch1fZQoaAZoCWgPQwgb9KW3v1RiQJSGlFKUaBVN6ANoFkdAlC5q9wm3OXV9lChoBmgJaA9DCPJ7m/7sAGZAlIaUUpRoFU3oA2gWR0CUMl5EMLF5dX2UKGgGaAloD0MItp+M8eE2ZECUhpRSlGgVTegDaBZHQJQzj0VafSR1fZQoaAZoCWgPQwgp6PaSxvtiQJSGlFKUaBVN6ANoFkdAlDarAgxJunV9lChoBmgJaA9DCDRpU3WPkWNAlIaUUpRoFU3oA2gWR0CUN93o9s7/dX2UKGgGaAloD0MIMh6lEh4PZECUhpRSlGgVTegDaBZHQJQ5GRkmQbN1fZQoaAZoCWgPQwgYJH1ahQxwQJSGlFKUaBVNZQFoFkdAlDsqVdHDrXV9lChoBmgJaA9DCMWQnEzcD2JAlIaUUpRoFU3oA2gWR0CUO5OfukULdX2UKGgGaAloD0MIutdJfdkvY0CUhpRSlGgVTegDaBZHQJQ+BDzAeq91fZQoaAZoCWgPQwhGeHsQgv5hQJSGlFKUaBVN6ANoFkdAlET8Ft8/lnV9lChoBmgJaA9DCBv2e2Kd7V1AlIaUUpRoFU3oA2gWR0CUZpCQcPvsdX2UKGgGaAloD0MIyZOka6Z4aECUhpRSlGgVTegDaBZHQJRmxZ4fOlh1fZQoaAZoCWgPQwjGw3sOrJBlQJSGlFKUaBVN6ANoFkdAlGk3Dm8ujHV9lChoBmgJaA9DCCkJibSNAWNAlIaUUpRoFU3oA2gWR0CUakbah6BzdX2UKGgGaAloD0MIWRmNfF74X0CUhpRSlGgVTegDaBZHQJRqVc6eXiR1fZQoaAZoCWgPQwhwJxHhX5llQJSGlFKUaBVN6ANoFkdAlHCQsPJ7s3V9lChoBmgJaA9DCNQLPs3JhVRAlIaUUpRoFUu2aBZHQJRxjiLl3hZ1fZQoaAZoCWgPQwgLfbCMDT5oQJSGlFKUaBVN6ANoFkdAlHrHU2DQJHV9lChoBmgJaA9DCL3+JD73a2JAlIaUUpRoFU3oA2gWR0CUgXT1CgK4dX2UKGgGaAloD0MIJQNAFTf1YkCUhpRSlGgVTegDaBZHQJSDGeBg/kh1fZQoaAZoCWgPQwj4ja89MyVjQJSGlFKUaBVN6ANoFkdAlIe7KFIuoXV9lChoBmgJaA9DCAq9/iQ+o2VAlIaUUpRoFU3oA2gWR0CUiYRqoIfKdX2UKGgGaAloD0MIwlHy6pwhYkCUhpRSlGgVTegDaBZHQJSLVzU7SzB1fZQoaAZoCWgPQwhzofKv5b9mQJSGlFKUaBVN6ANoFkdAlI5vKISDiHV9lChoBmgJaA9DCFMFo5I6HGZAlIaUUpRoFU3oA2gWR0CUjw3w1BMSdX2UKGgGaAloD0MIwjBgyVVqbkCUhpRSlGgVTSQCaBZHQJSQgQAdXDF1fZQoaAZoCWgPQwj3x3vVSpZkQJSGlFKUaBVN6ANoFkdAlJGhJ7LMcXV9lChoBmgJaA9DCFncf2S6rmVAlIaUUpRoFU3oA2gWR0CUmCsByS3cdX2UKGgGaAloD0MIaVch5SelRECUhpRSlGgVS9NoFkdAlJkEy57PZHV9lChoBmgJaA9DCG6kbJF0BXBAlIaUUpRoFU2cA2gWR0CUuEZHuqm1dX2UKGgGaAloD0MIMo/8wUBEYkCUhpRSlGgVTegDaBZHQJS5KkVN5+p1fZQoaAZoCWgPQwiWkuUkFG5lQJSGlFKUaBVN6ANoFkdAlLxglWwNb3V9lChoBmgJaA9DCGsr9pfdj2ZAlIaUUpRoFU3oA2gWR0CUwcBtk4FSdX2UKGgGaAloD0MIp3hcVAuJZUCUhpRSlGgVTegDaBZHQJTCe4PPLPl1fZQoaAZoCWgPQwgvibMialRxQJSGlFKUaBVNUwNoFkdAlMTOF6AvtnV9lChoBmgJaA9DCARxHk4g7nBAlIaUUpRoFU3jAWgWR0CUxRrcj7hvdX2UKGgGaAloD0MIeA360tsfZ0CUhpRSlGgVTegDaBZHQJTIXabnX/Z1fZQoaAZoCWgPQwhJ2SJpt4RxQJSGlFKUaBVNbgNoFkdAlMvXw9aEBnV9lChoBmgJaA9DCBCv6xds1WFAlIaUUpRoFU3oA2gWR0CUzIR9gF5fdX2UKGgGaAloD0MIaTnQQ23VaECUhpRSlGgVTegDaBZHQJTPEgFHJ911fZQoaAZoCWgPQwg+WpwxzFdgQJSGlFKUaBVN6ANoFkdAlNAWtuDSPXV9lChoBmgJaA9DCCleZW1T+GBAlIaUUpRoFU3oA2gWR0CU0z7SApazdX2UKGgGaAloD0MI8PrMWZ8tYECUhpRSlGgVTegDaBZHQJTVQ8NhE0B1fZQoaAZoCWgPQwgVjbW/s69kQJSGlFKUaBVN6ANoFkdAlNZwUQCjlHV9lChoBmgJaA9DCEJdpFCWDWBAlIaUUpRoFU3oA2gWR0CU3qEug6EKdX2UKGgGaAloD0MI+GwdHOzSZECUhpRSlGgVTegDaBZHQJT9+kl/pdN1fZQoaAZoCWgPQwjIz0aum8VkQJSGlFKUaBVN6ANoFkdAlP7lEE1VHXV9lChoBmgJaA9DCGZK62+JxHBAlIaUUpRoFU1NA2gWR0CVACj9XLeRdX2UKGgGaAloD0MI9BlQbwYdcUCUhpRSlGgVTZ0BaBZHQJUAREpiI+J1fZQoaAZoCWgPQwgxlX7CWQNxQJSGlFKUaBVNKwNoFkdAlQE2pda+vnV9lChoBmgJaA9DCMkdNpEZSGNAlIaUUpRoFU3oA2gWR0CVAdx+az/qdX2UKGgGaAloD0MI6rMDrqtebkCUhpRSlGgVTcUCaBZHQJUD6hPCVKR1fZQoaAZoCWgPQwjKUuv9Rr5fQJSGlFKUaBVN6ANoFkdAlQZWSdOIqXV9lChoBmgJaA9DCFBUNqyp03FAlIaUUpRoFU17AmgWR0CVCQHaN+9bdX2UKGgGaAloD0MIj26ERUWiX0CUhpRSlGgVTegDaBZHQJUJMmkWRA91fZQoaAZoCWgPQwgvqG+Z099KQJSGlFKUaBVL2WgWR0CVC1vCdjG2dX2UKGgGaAloD0MIrRiuDgB1Y0CUhpRSlGgVTegDaBZHQJUMtzIV/MJ1fZQoaAZoCWgPQwgAH7x26a5vQJSGlFKUaBVNcwFoFkdAlQ7ltCRfW3V9lChoBmgJaA9DCIAqbtzi/GdAlIaUUpRoFU3oA2gWR0CVEBstCiRGdX2UKGgGaAloD0MImuleJ/WWYUCUhpRSlGgVTegDaBZHQJUTbxYq5LB1fZQoaAZoCWgPQwgbu0T1FotxQJSGlFKUaBVNvAFoFkdAlRP+H8CPqHV9lChoBmgJaA9DCJhMFYzK82ZAlIaUUpRoFU3oA2gWR0CVFG0iyIHkdX2UKGgGaAloD0MID0JAvoTuZUCUhpRSlGgVTegDaBZHQJUXWb7TDwZ1fZQoaAZoCWgPQwhwJNBgU41wQJSGlFKUaBVNTAFoFkdAlRe9HMEA53V9lChoBmgJaA9DCLd++s+aFzNAlIaUUpRoFUvcaBZHQJUiVJEpiJB1fZQoaAZoCWgPQwhEh8CRQFNjQJSGlFKUaBVN6ANoFkdAlSJWNedCmnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar-model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a014dad6f7319b906d50f5e09891723cc4155d27f331b5303a9a51017f6df383
3
+ size 147416
lunar-model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar-model/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e49e9b700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e49e9b790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e49e9b820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e49e9b8b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6e49e9b940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6e49e9b9d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e49e9ba60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e49e9baf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6e49e9bb80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e49e9bc10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e49e9bca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e49e9bd30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6e49e94870>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673390952250490511,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2JI71cb066UHYPNKu0di2j2uw6wOObswAAgD8AAIA/zQJYvMOpdrq6m2k6wN8eNq10yTrw3Ya5AACAPwAAgD/NWPU84V6PunXMnDqcPWg3F2X3OuA6SbkAAIA/AACAP7MROz2unZq6QOqButExyrQOekO62tyVOQAAgD8AAIA/cx+jPVz7NLqQVYS7jfhLOI/ePrs8ZYQ4AACAPwAAgD8A9JK7XF89usianrv8w7M0qrk0u1o3KrQAAIA/AACAPzNVUT2uUZW6Sb85PNvjRjwoJMU6SVktvQAAgD8AAIA/mmsGPY+CLbrZNLy4c5Whs+ToEDt6K983AACAPwAAgD+AjpW97FG6OB9uS7olKIS2cJYCux0XeDkAAAAAAACAPwAUurwpiA26sgPcuteU0LWoscc65q78OQAAgD8AAIA/ALSGvI/GHLr7cHy5QdeVtCEFUzqLe5I4AACAPwAAgD8ATd689sR9utTtDzriO4c1OXjAug+AJ7kAAIA/AACAP1r7sz2PPjK6nyOHOxKcQzg+qiI6Xq7DtwAAAAAAAIA/muHEu49uVrphIj06vPaptEvAU7vAlVm5AACAPwAAgD/mhhI9XG82uvIULjRvFr0vJoblunx9irMAAIA/AACAP5q9272PVji6QdrGOpEE3bRH6YW67m3luQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7UeKyLDGTECUhpRSlIwBbJRL+4wBdJRHQJORKmzjWCp1fZQoaAZoCWgPQwgLluoCXhZjQJSGlFKUaBVN6ANoFkdAk5Ws5n13+3V9lChoBmgJaA9DCFsnLserK2FAlIaUUpRoFU3oA2gWR0CTluilzltCdX2UKGgGaAloD0MIG3+ismGbZ0CUhpRSlGgVTegDaBZHQJOblBu4wyt1fZQoaAZoCWgPQwjJWdjTjlNjQJSGlFKUaBVN6ANoFkdAk50B7RfF73V9lChoBmgJaA9DCNi2KLNBhhBAlIaUUpRoFUv8aBZHQJOfQDA8B+51fZQoaAZoCWgPQwjwpfCg2cddQJSGlFKUaBVN6ANoFkdAk5/YqslsxnV9lChoBmgJaA9DCHukwW3tt2RAlIaUUpRoFU3oA2gWR0CTosL5RCQcdX2UKGgGaAloD0MI5lq0AO0ucUCUhpRSlGgVTfcCaBZHQJOqUa2nbZh1fZQoaAZoCWgPQwgH0O/7NxVRQJSGlFKUaBVLzWgWR0CTqqmoR7JGdX2UKGgGaAloD0MITRHg9C4ZZECUhpRSlGgVTegDaBZHQJPMhFEy+Ht1fZQoaAZoCWgPQwgZWMfxw1NhQJSGlFKUaBVN6ANoFkdAk8zIgmqo63V9lChoBmgJaA9DCLSQgNHl/V9AlIaUUpRoFU3oA2gWR0CTz24VymygdX2UKGgGaAloD0MICYuKOJ2XZUCUhpRSlGgVTegDaBZHQJPQl1RtP551fZQoaAZoCWgPQwg+WwcH+9FkQJSGlFKUaBVN6ANoFkdAk9Cn+l0o0HV9lChoBmgJaA9DCOfG9IQll2ZAlIaUUpRoFU3oA2gWR0CT0YIo3JgcdX2UKGgGaAloD0MIQG1UpwNpY0CUhpRSlGgVTegDaBZHQJPWdTDO1OV1fZQoaAZoCWgPQwhyio7k8tdgQJSGlFKUaBVN6ANoFkdAk9fx6jWTYHV9lChoBmgJaA9DCOHx7V2D7FJAlIaUUpRoFUvnaBZHQJPeUp9ZzPt1fZQoaAZoCWgPQwieXb714XhiQJSGlFKUaBVN6ANoFkdAk+KiPyTY/XV9lChoBmgJaA9DCAJKQ41ComdAlIaUUpRoFU3oA2gWR0CT49qDK5kLdX2UKGgGaAloD0MItqFinL/jbECUhpRSlGgVTccCaBZHQJPnR3JPqLV1fZQoaAZoCWgPQwgPfAxWnBRkQJSGlFKUaBVN6ANoFkdAk+irsa86FXV9lChoBmgJaA9DCFQ3F39bWmVAlIaUUpRoFU3oA2gWR0CT6icE/0NCdX2UKGgGaAloD0MIa0QwDi6HZ0CUhpRSlGgVTegDaBZHQJPs9gv114h1fZQoaAZoCWgPQwjVWpiF9t9iQJSGlFKUaBVN6ANoFkdAk/APYzzmOnV9lChoBmgJaA9DCL5QwHYw4WFAlIaUUpRoFU3oA2gWR0CT+LPn0TURdX2UKGgGaAloD0MIixagbTXOZECUhpRSlGgVTegDaBZHQJQct55Z8rt1fZQoaAZoCWgPQwggeedQhgxfQJSGlFKUaBVN6ANoFkdAlBzxgVoHs3V9lChoBmgJaA9DCPeUnBP7B2ZAlIaUUpRoFU3oA2gWR0CUH3OavzOHdX2UKGgGaAloD0MIkWKARJN3YkCUhpRSlGgVTegDaBZHQJQgmD0163R1fZQoaAZoCWgPQwiW0cjnlUxjQJSGlFKUaBVN6ANoFkdAlCCqLjxTbXV9lChoBmgJaA9DCLPqc7WVs2BAlIaUUpRoFU3oA2gWR0CUJnposZpBdX2UKGgGaAloD0MIlufB3VmcaECUhpRSlGgVTegDaBZHQJQoAnWrfch1fZQoaAZoCWgPQwgb9KW3v1RiQJSGlFKUaBVN6ANoFkdAlC5q9wm3OXV9lChoBmgJaA9DCPJ7m/7sAGZAlIaUUpRoFU3oA2gWR0CUMl5EMLF5dX2UKGgGaAloD0MItp+M8eE2ZECUhpRSlGgVTegDaBZHQJQzj0VafSR1fZQoaAZoCWgPQwgp6PaSxvtiQJSGlFKUaBVN6ANoFkdAlDarAgxJunV9lChoBmgJaA9DCDRpU3WPkWNAlIaUUpRoFU3oA2gWR0CUN93o9s7/dX2UKGgGaAloD0MIMh6lEh4PZECUhpRSlGgVTegDaBZHQJQ5GRkmQbN1fZQoaAZoCWgPQwgYJH1ahQxwQJSGlFKUaBVNZQFoFkdAlDsqVdHDrXV9lChoBmgJaA9DCMWQnEzcD2JAlIaUUpRoFU3oA2gWR0CUO5OfukULdX2UKGgGaAloD0MIutdJfdkvY0CUhpRSlGgVTegDaBZHQJQ+BDzAeq91fZQoaAZoCWgPQwhGeHsQgv5hQJSGlFKUaBVN6ANoFkdAlET8Ft8/lnV9lChoBmgJaA9DCBv2e2Kd7V1AlIaUUpRoFU3oA2gWR0CUZpCQcPvsdX2UKGgGaAloD0MIyZOka6Z4aECUhpRSlGgVTegDaBZHQJRmxZ4fOlh1fZQoaAZoCWgPQwjGw3sOrJBlQJSGlFKUaBVN6ANoFkdAlGk3Dm8ujHV9lChoBmgJaA9DCCkJibSNAWNAlIaUUpRoFU3oA2gWR0CUakbah6BzdX2UKGgGaAloD0MIWRmNfF74X0CUhpRSlGgVTegDaBZHQJRqVc6eXiR1fZQoaAZoCWgPQwhwJxHhX5llQJSGlFKUaBVN6ANoFkdAlHCQsPJ7s3V9lChoBmgJaA9DCNQLPs3JhVRAlIaUUpRoFUu2aBZHQJRxjiLl3hZ1fZQoaAZoCWgPQwgLfbCMDT5oQJSGlFKUaBVN6ANoFkdAlHrHU2DQJHV9lChoBmgJaA9DCL3+JD73a2JAlIaUUpRoFU3oA2gWR0CUgXT1CgK4dX2UKGgGaAloD0MIJQNAFTf1YkCUhpRSlGgVTegDaBZHQJSDGeBg/kh1fZQoaAZoCWgPQwj4ja89MyVjQJSGlFKUaBVN6ANoFkdAlIe7KFIuoXV9lChoBmgJaA9DCAq9/iQ+o2VAlIaUUpRoFU3oA2gWR0CUiYRqoIfKdX2UKGgGaAloD0MIwlHy6pwhYkCUhpRSlGgVTegDaBZHQJSLVzU7SzB1fZQoaAZoCWgPQwhzofKv5b9mQJSGlFKUaBVN6ANoFkdAlI5vKISDiHV9lChoBmgJaA9DCFMFo5I6HGZAlIaUUpRoFU3oA2gWR0CUjw3w1BMSdX2UKGgGaAloD0MIwjBgyVVqbkCUhpRSlGgVTSQCaBZHQJSQgQAdXDF1fZQoaAZoCWgPQwj3x3vVSpZkQJSGlFKUaBVN6ANoFkdAlJGhJ7LMcXV9lChoBmgJaA9DCFncf2S6rmVAlIaUUpRoFU3oA2gWR0CUmCsByS3cdX2UKGgGaAloD0MIaVch5SelRECUhpRSlGgVS9NoFkdAlJkEy57PZHV9lChoBmgJaA9DCG6kbJF0BXBAlIaUUpRoFU2cA2gWR0CUuEZHuqm1dX2UKGgGaAloD0MIMo/8wUBEYkCUhpRSlGgVTegDaBZHQJS5KkVN5+p1fZQoaAZoCWgPQwiWkuUkFG5lQJSGlFKUaBVN6ANoFkdAlLxglWwNb3V9lChoBmgJaA9DCGsr9pfdj2ZAlIaUUpRoFU3oA2gWR0CUwcBtk4FSdX2UKGgGaAloD0MIp3hcVAuJZUCUhpRSlGgVTegDaBZHQJTCe4PPLPl1fZQoaAZoCWgPQwgvibMialRxQJSGlFKUaBVNUwNoFkdAlMTOF6AvtnV9lChoBmgJaA9DCARxHk4g7nBAlIaUUpRoFU3jAWgWR0CUxRrcj7hvdX2UKGgGaAloD0MIeA360tsfZ0CUhpRSlGgVTegDaBZHQJTIXabnX/Z1fZQoaAZoCWgPQwhJ2SJpt4RxQJSGlFKUaBVNbgNoFkdAlMvXw9aEBnV9lChoBmgJaA9DCBCv6xds1WFAlIaUUpRoFU3oA2gWR0CUzIR9gF5fdX2UKGgGaAloD0MIaTnQQ23VaECUhpRSlGgVTegDaBZHQJTPEgFHJ911fZQoaAZoCWgPQwg+WpwxzFdgQJSGlFKUaBVN6ANoFkdAlNAWtuDSPXV9lChoBmgJaA9DCCleZW1T+GBAlIaUUpRoFU3oA2gWR0CU0z7SApazdX2UKGgGaAloD0MI8PrMWZ8tYECUhpRSlGgVTegDaBZHQJTVQ8NhE0B1fZQoaAZoCWgPQwgVjbW/s69kQJSGlFKUaBVN6ANoFkdAlNZwUQCjlHV9lChoBmgJaA9DCEJdpFCWDWBAlIaUUpRoFU3oA2gWR0CU3qEug6EKdX2UKGgGaAloD0MI+GwdHOzSZECUhpRSlGgVTegDaBZHQJT9+kl/pdN1fZQoaAZoCWgPQwjIz0aum8VkQJSGlFKUaBVN6ANoFkdAlP7lEE1VHXV9lChoBmgJaA9DCGZK62+JxHBAlIaUUpRoFU1NA2gWR0CVACj9XLeRdX2UKGgGaAloD0MI9BlQbwYdcUCUhpRSlGgVTZ0BaBZHQJUAREpiI+J1fZQoaAZoCWgPQwgxlX7CWQNxQJSGlFKUaBVNKwNoFkdAlQE2pda+vnV9lChoBmgJaA9DCMkdNpEZSGNAlIaUUpRoFU3oA2gWR0CVAdx+az/qdX2UKGgGaAloD0MI6rMDrqtebkCUhpRSlGgVTcUCaBZHQJUD6hPCVKR1fZQoaAZoCWgPQwjKUuv9Rr5fQJSGlFKUaBVN6ANoFkdAlQZWSdOIqXV9lChoBmgJaA9DCFBUNqyp03FAlIaUUpRoFU17AmgWR0CVCQHaN+9bdX2UKGgGaAloD0MIj26ERUWiX0CUhpRSlGgVTegDaBZHQJUJMmkWRA91fZQoaAZoCWgPQwgvqG+Z099KQJSGlFKUaBVL2WgWR0CVC1vCdjG2dX2UKGgGaAloD0MIrRiuDgB1Y0CUhpRSlGgVTegDaBZHQJUMtzIV/MJ1fZQoaAZoCWgPQwgAH7x26a5vQJSGlFKUaBVNcwFoFkdAlQ7ltCRfW3V9lChoBmgJaA9DCIAqbtzi/GdAlIaUUpRoFU3oA2gWR0CVEBstCiRGdX2UKGgGaAloD0MImuleJ/WWYUCUhpRSlGgVTegDaBZHQJUTbxYq5LB1fZQoaAZoCWgPQwgbu0T1FotxQJSGlFKUaBVNvAFoFkdAlRP+H8CPqHV9lChoBmgJaA9DCJhMFYzK82ZAlIaUUpRoFU3oA2gWR0CVFG0iyIHkdX2UKGgGaAloD0MID0JAvoTuZUCUhpRSlGgVTegDaBZHQJUXWb7TDwZ1fZQoaAZoCWgPQwhwJNBgU41wQJSGlFKUaBVNTAFoFkdAlRe9HMEA53V9lChoBmgJaA9DCLd++s+aFzNAlIaUUpRoFUvcaBZHQJUiVJEpiJB1fZQoaAZoCWgPQwhEh8CRQFNjQJSGlFKUaBVN6ANoFkdAlSJWNedCmnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar-model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dff1fe43b2ff68423c9b78ea0ab8e74ed9d176eebef4e1e02edb378d2a0a0c1
3
+ size 87929
lunar-model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27862d0f60f14b1fbda4b3c7419d1d94c9d3ab93754780262a9c3302ef2ca715
3
+ size 43393
lunar-model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar-model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (232 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.893570140434, "std_reward": 13.299542646344, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T23:12:10.226822"}