Восстановление полных реплик в диалоге

с помощью генеративных языковых моделей семейства ruGPT

Козиев Илья, 2022

- Неформальный диалог
- Читчат

Базовый пример - знакомство:

- Эй, тебя как зовут?
- Джульетта Мао ⇒ Меня зовут Джульетта Мао
- Как тебя зовут сын мой.
- Леонардо Ди Каприо. ⇒ Меня зовут Леонардо Ди Каприо
- Привет, а зовут тебя как, кстати?
- Стас, а тебя? ⇒ Меня зовут Стас. Как тебя зовут?

Достаточно длинные диалоги могут вестись в таком же стиле:

- Тебе когда-нибудь ломали что-нибудь? - Да. ⇒ однажды мне сломали кое-что
- Что? ⇒ что тебе ломали?
- Жизнь. ⇒ мне ломали жизнь

- Что в жизни главное?
- Я думаю, что иметь цель ⇒ главное в жизни иметь цель
- Она есть у всех людей? ⇒ цель в жизни есть у всех людей?
- Думаю, что нет ⇒ цель в жизни есть не у всех людей

Эллипсисы 🖃:

- Как же тебя зовут, а?
- Меня Стас, а тебя? ⇒ Меня зовут Стас. Как тебя зовут?

Анафора 🖅:

- Ты собак любишь?
- Не люблю я их ⇒ я не люблю собак

Гэппинг 🖫:

- Ты кошек любишь?
- Их нет ⇒ я не люблю кошек

Сложный гэппинг:

- В 25 лет вы получаете пенсию?
- Не я отец. ⇒ Я не получаю пенсию. Отец получает пенсию

Иногда от реплики остается только наречие:

- Девушка, а Вы животных любите?
- Очень! ⇒ Я очень люблю животных

Или даже предлог:

- Ты чай предпочитаешь с лимоном?
- Без ⇒ Я предпочитаю чай без лимона

В редких случаях и главное слово в словосочетании может опускаться:

- Мама, купи мне собаку.
- А ты будешь за ней ухаживать?
- А ты мне здоровую купи. ⇒ купи мне здоровую собаку

Иногда требуется привлечение здравого смысла:

- Мне на голову упала коробка.
- А что в ней было? ⇒ что было в коробке голове?
- Доктор, мой ребенок не ест мясо. Чем его заменить?
- Собакой. Собака всегда ест мясо. ⇒ :)

Типичные паттерны: например, восстановление подлежащего (см. pro drop)

- Согласна?
- Да ⇒ я согласна

Отрицания в диалоге:

- Я не прав?
- Нет. (Да.) ⇒ ты не прав

Раскрытие не сводится к копированию слов из контекста:

- Как прошли выходные?
- В Простоквашино ездила... ⇒ я на выходных ездила в Простоквашино

Все вышесказанное может быть в разных сочетаниях одновременно:

- Где твой кот?
- Жена к ветеринару повезла. ⇒ жена повезла моего кота к ветеринару
- Заболел? ⇒ твой кот заболел?

Сложные предложения:

- Я сварила суп, иди ешь.
- Из чего? ⇒ из чего ты сварила суп?

Импликатура - смысл "между строк":

- Ты разве ещё не ел? - Тебя ждал ⇒ я еще не ел. я ждал тебя.
- Экзамен сдала?
- Увы:(⇒ я не сдала экзамен

Голофразы:

- Деньжат одолжишь?
- Щас! ⇒ я не одолжу деньжат

Отказ от использования коротких реплик возможен:

- 1) в стилистических целях подчеркнуть свою мысль
- 2) если есть подозрения, что собеседник (чатбот, иностранец) не владеет полным набором навыков работы в таком коммуникационном регистре
- 3) чтобы устранить возможность неправильного толкования

- Ребенок не ест мясо. Его можно чем-то заменить?
- Конечно, собакой она всегда ест мясо

Чем мешают неполные реплики?

Отсутствие части слов и "неправильный" синтаксис затрудняет работу многих алгоритмов NLP:

- Регулярные выражения
- Классификаторы интентов
- Детекторы оскорблений, токсичности
- Частеречная разметка
- Синтаксический анализ
- Semantic Role Labeling
- Выделение фактов

Постановка задачи и ограничения

- Работаем только с диалогом, читчатом
- Короткие реплики (до ~20 слов)
- Контекст последние 2 или 3 реплики, при необходимости применяем модель рекурсивно
- Не обрабатываем случаи катафоры, только левый контекст
- Не требуем от модели помечать антецедент анафоры, референт для кореференции, источник заполнения эллипсиса
- Удаляем вводные слова и фразы, междомения
- По возможности интерпретируем импликатуры и голофразы
- Восстанавливаем местоименные подлежащие, даже если форма сказуемого содержит информацию о лице/числе
- Нормализуем порядок слов, вопросительные слова в начало

Близкие задачи в NLP

- Раскрытие анафоры
- Заполнение эллипсиса
- Кореференция

Генеративная модель как решение

- RuGPT семейство больших генеративных языковых моделей с архитектурой GPT
- Ключевая особенность претрейн на большом корпусе
- Ряд моделей свободно доступен на https://huggingface.co/sberbank-ai
- Адаптация модели на задачу файнтюн на небольшом корпусе

Генеративная модель как решение

Плюсы:

- Простота инференса: никаких парсеров, тэггеров, словарей
- Простота расширения датасета: разметки как таковой нет
- Инструментарий для GPT: анализ, дистилляция и т.д.
- Можно использовать для генерации сырой разметки

Обучающий датасет

Ручная разметка, примерно 110,000 фрагментов:

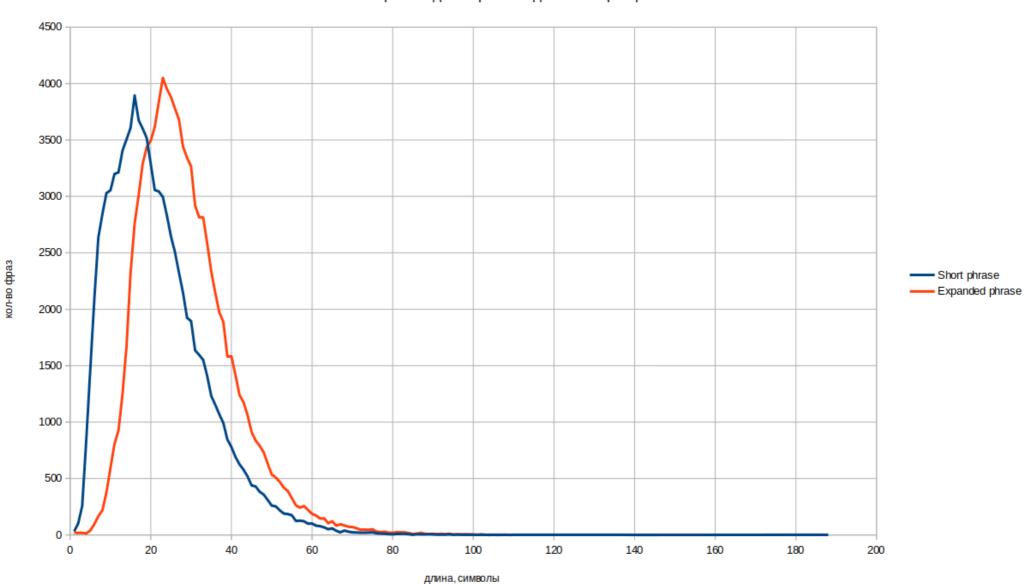
```
Как вы догадались, что задержанный — вор?
По шапке.
На нем она горела? | шапка горела на задержанном?
```

Для файнтюна GPT конвертируются в сэмплы:

```
<s>- Как вы догадались, что задержанный — вор?
- По шапке.
```

- На нем она горела? # шапка горела на задержанном?</s>

Обучающий датасет



Синтетические данные

- Пока было мало ручных данных, использовались синтетические
- Генерация синтетики dependency parser (UDPipe + CинТагРус) и морфологический словарь (ruword2tags)
- С помощью правил генерируются вопросы, короткие и полные ответы к утвердительным предлождениям:

Т: Голодная кошка отчаянно преследует жирную мышку.

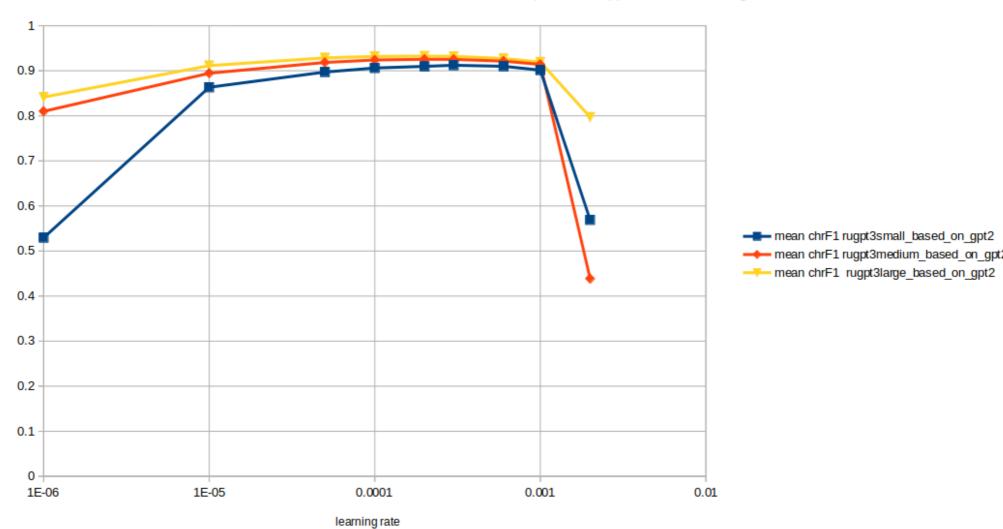
- 1) Кто ловит мышку? Голодная кошка ⇒ Голодная кошка ловит мышку
- 2) Кого преследует кошка? Жирную мышку ⇒ Кошка преследует жирную мышку
- 3) Какая кошка преследует мышку? Голодная ⇒ Голодная кошка преследует мышку
- Оценки качества синтетики: сильно хуже ручных данных
- Актуальная модель обучена **только** на ручных данных

- Файнтюн моделей small, medium и large семейства sberbank-ai/rugpt3*_based_on_gpt2
- Тренируются с помощью ru-gpts/pretrain_transformers.py
- 1 эпоха
- grid search для подбора learning rate
- 3-fold кросс-валидация
- Метрики: а) перплексия, б) посимвольная похожесть на 3символьных шинглах
- Коэффициент Жаккара и chrF1 дают оценку, насколько точно модель выдает эталонный полный текст реплики

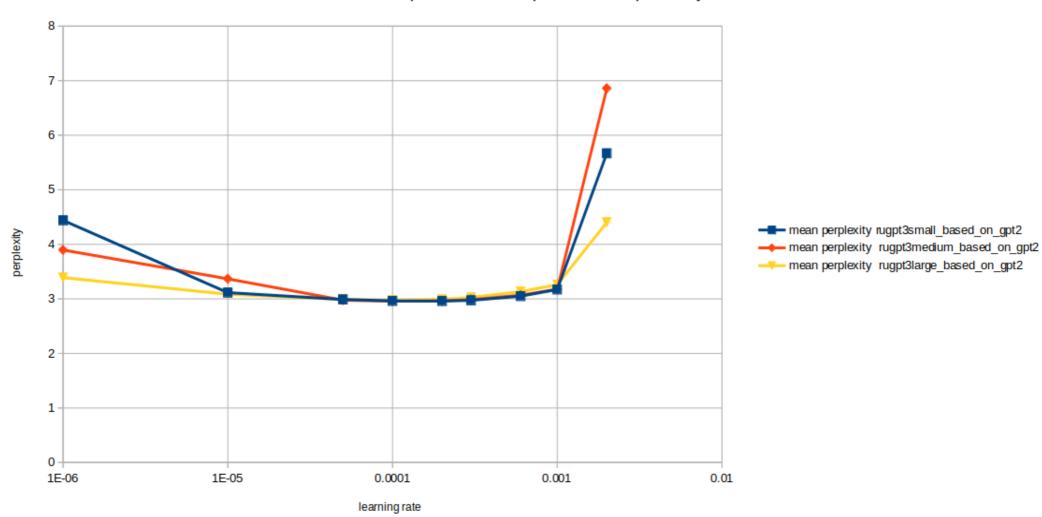
learning rate	mean chrF1 rugpt3small_based_on_gpt2	mean chrF1 rugpt3medium_based_on_gpt2	mean chrF1 rugpt3large_based_on_gpt2
1E-06	0.529523628173215	0.809920604205701	0.841463599851881
1E-05	0.863327725266234	0.894392367286638	0.911348739820123
5E-05	0.897085498922204	0.918327352355936	0.928580141773602
0.0001	0.906100945040981	0.923846332641589	0.931729441105742
0.0002	0.909682085410882	0.92543308713616	0.932408785365981
0.0003	0.912161969934597	0.9251295765727	0.93195696519913
0.0006	0.909859537783758	0.921306048848982	0.927012377425078
0.001	0.901312727758346	0.914072612706664	0.919323844591289
0.002	0.568983553490307	0.438466434394724	0.797015715084427

посимвольная похожесть, chrF1

Зависимость точности восстановления полной реплики в диалоге от learning rate



Зависимость перплексии полной реплики от скорости обучения



Модель на huggingface

Модель доступна для свободного использования

Ha базе sberbank-ai/rugpt3large_based_on_gpt2

Kapтoчкa: https://huggingface.co/inkoziev/rugpt_interpreter

Пример использования с transformers:

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda" if torch.cuda.is available() else "cpu"
model name = "inkoziev/rugpt interpreter"
tokenizer = AutoTokenizer.from pretrained(model name)
tokenizer.add special tokens({ bos token': '<s>', 'eos token': '</s>', 'pad token': '<pad>'})
model = AutoModelForCausalLM.from pretrained(model name)
model.to(device)
model.eval()
# На вход модели подаем последние 2-3 реплики диалога. Каждая реплика на отдельной строке, начинается с символа "-"
# В конце добавляем символ "#"
input text = """<s>- Как тебя зовут?
- Джульетта Mao #"""
encoded prompt = tokenizer.encode(input text, add special tokens=False, return tensors="pt").to(device)
output sequences = model.generate(input ids=encoded prompt, max length=100, num return sequences=1,
pad token id=tokenizer.pad token id)
text = tokenizer.decode(output sequences[0].tolist(), clean up tokenization spaces=True)[len(input text)+1:]
text = text[: text.find('</s>')]
print(text)
```

Ссылки

- 1) Разрешение анафоры (Dialogue evaluation 2014) https://www.dialog-21.ru/evaluation/2014/anaphora/
- 2) Automatic Gapping Resolution for Russian (Dialogue shared task) https://github.com/dialogue-evaluation/AGRR-2019
- 3) Anaphora and Coreference Resolution for Russian (Dialogue shared task) http://www.dialog-21.ru/en/evaluation/2019/disambiguation/anaphora/
- 4) SARG: A Novel Semi Autoregressive Generator for Multi-turn Incomplete Utterance Restoration https://arxiv.org/pdf/2008.01474v3.pdf
- 5) CHRF: character n-gram F-score for automatic MT evaluation https://aclanthology.org/W15-3049.pdf