theodoreguillet
commited on
Commit
•
945e262
1
Parent(s):
0ede586
initial commit
Browse files- 1_Pooling/config.json +7 -0
- README.md +107 -0
- config.json +80 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_sts-dev_results.csv +5 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- similarity_evaluation_sts-test_results.csv +2 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-similarity
|
5 |
+
- transformers
|
6 |
+
- Education
|
7 |
+
- fr
|
8 |
+
- flaubert
|
9 |
+
- sentence-transformers
|
10 |
+
- feature-extraction
|
11 |
+
- xnli
|
12 |
+
- stsb_multi_mt
|
13 |
+
---
|
14 |
+
|
15 |
+
# inokufu/bertheo
|
16 |
+
|
17 |
+
A [sentence-transformers](https://www.SBERT.net) model fine-tuned on course sentences. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
18 |
+
|
19 |
+
## Details
|
20 |
+
|
21 |
+
This model is based on the French flaubert-base-uncased pre-trained model [1, 2].
|
22 |
+
|
23 |
+
It was first fine-tuned on our learning object (LO) sentences dataset. This dataset consists of a sample of 500k sentences of course descriptions. We used standard parameter settings for fine-tuning as mentioned in the original BERT paper [3]. This allows the model to improve its performance on the target task (Masked Language Model) for domain-specific sentences.
|
24 |
+
|
25 |
+
It was then fine-tuned on a natural language inference task (XNLI) [4]. This task consists in training the model to recognize relations between sentences (contradiction, neutral, implication).
|
26 |
+
|
27 |
+
It was then fine-tuned on a text semantic similarity task (on STS-fr data) [5]. This task consists in training the model to estimate the similarity between two sentences.
|
28 |
+
|
29 |
+
This fine-tuning process allows our model to have a semantic representation of words that is much better than the one proposed by the base model.
|
30 |
+
|
31 |
+
## Usage (Sentence-Transformers)
|
32 |
+
|
33 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
34 |
+
|
35 |
+
```
|
36 |
+
pip install -U sentence-transformers
|
37 |
+
```
|
38 |
+
|
39 |
+
Then you can use the model like this:
|
40 |
+
|
41 |
+
```python
|
42 |
+
from sentence_transformers import SentenceTransformer
|
43 |
+
sentences = ["Apprendre le python", "Devenir expert en comptabilité"]
|
44 |
+
|
45 |
+
model = SentenceTransformer('inokufu/bertheo')
|
46 |
+
embeddings = model.encode(sentences)
|
47 |
+
print(embeddings)
|
48 |
+
```
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
## Usage (HuggingFace Transformers)
|
53 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
54 |
+
|
55 |
+
```python
|
56 |
+
from transformers import AutoTokenizer, AutoModel
|
57 |
+
import torch
|
58 |
+
|
59 |
+
|
60 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
61 |
+
def mean_pooling(model_output, attention_mask):
|
62 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
63 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
64 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
65 |
+
|
66 |
+
|
67 |
+
# Sentences we want sentence embeddings for
|
68 |
+
sentences = ["Apprendre le python", "Devenir expert en comptabilité"]
|
69 |
+
|
70 |
+
# Load model from HuggingFace Hub
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained('inokufu/bertheo')
|
72 |
+
model = AutoModel.from_pretrained('inokufu/bertheo')
|
73 |
+
|
74 |
+
# Tokenize sentences
|
75 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
76 |
+
|
77 |
+
# Compute token embeddings
|
78 |
+
with torch.no_grad():
|
79 |
+
model_output = model(**encoded_input)
|
80 |
+
|
81 |
+
# Perform pooling. In this case, mean pooling.
|
82 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
83 |
+
|
84 |
+
print("Sentence embeddings:")
|
85 |
+
print(sentence_embeddings)
|
86 |
+
```
|
87 |
+
|
88 |
+
## Evaluation Results
|
89 |
+
|
90 |
+
STS (fr) score: 83.05%
|
91 |
+
|
92 |
+
|
93 |
+
## Model Architecture
|
94 |
+
```
|
95 |
+
SentenceTransformer(
|
96 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: FlaubertModel
|
97 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
98 |
+
)
|
99 |
+
```
|
100 |
+
|
101 |
+
## References
|
102 |
+
|
103 |
+
[1] https://hal.archives-ouvertes.fr/hal-02784776v3/document <br>
|
104 |
+
[2] https://huggingface.co/flaubert/flaubert_base_uncased <br>
|
105 |
+
[3] https://arxiv.org/abs/1810.04805 <br>
|
106 |
+
[4] https://arxiv.org/abs/1809.05053 <br>
|
107 |
+
[5] https://huggingface.co/datasets/stsb_multi_mt <br>
|
config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "inokufu/bertheo",
|
3 |
+
"amp": 1,
|
4 |
+
"architectures": [
|
5 |
+
"FlaubertModel"
|
6 |
+
],
|
7 |
+
"asm": false,
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_index": 0,
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"bptt": 512,
|
12 |
+
"causal": false,
|
13 |
+
"clip_grad_norm": 5,
|
14 |
+
"dropout": 0.1,
|
15 |
+
"emb_dim": 768,
|
16 |
+
"embed_init_std": 0.02209708691207961,
|
17 |
+
"encoder_only": true,
|
18 |
+
"end_n_top": 5,
|
19 |
+
"eos_index": 1,
|
20 |
+
"fp16": true,
|
21 |
+
"gelu_activation": true,
|
22 |
+
"group_by_size": true,
|
23 |
+
"id2lang": {
|
24 |
+
"0": "fr"
|
25 |
+
},
|
26 |
+
"init_std": 0.02,
|
27 |
+
"is_encoder": true,
|
28 |
+
"lang2id": {
|
29 |
+
"fr": 0
|
30 |
+
},
|
31 |
+
"lang_id": 0,
|
32 |
+
"langs": [
|
33 |
+
"fr"
|
34 |
+
],
|
35 |
+
"layer_norm_eps": 1e-12,
|
36 |
+
"layerdrop": 0.0,
|
37 |
+
"lg_sampling_factor": -1,
|
38 |
+
"lgs": "fr",
|
39 |
+
"mask_index": 5,
|
40 |
+
"mask_token_id": 0,
|
41 |
+
"max_batch_size": 0,
|
42 |
+
"max_position_embeddings": 512,
|
43 |
+
"max_vocab": -1,
|
44 |
+
"mlm_steps": [
|
45 |
+
[
|
46 |
+
"fr",
|
47 |
+
null
|
48 |
+
]
|
49 |
+
],
|
50 |
+
"model_type": "flaubert",
|
51 |
+
"n_heads": 12,
|
52 |
+
"n_langs": 1,
|
53 |
+
"n_layers": 12,
|
54 |
+
"pad_index": 2,
|
55 |
+
"pad_token_id": 2,
|
56 |
+
"pre_norm": false,
|
57 |
+
"sample_alpha": 0,
|
58 |
+
"share_inout_emb": true,
|
59 |
+
"sinusoidal_embeddings": false,
|
60 |
+
"start_n_top": 5,
|
61 |
+
"summary_activation": null,
|
62 |
+
"summary_first_dropout": 0.1,
|
63 |
+
"summary_proj_to_labels": true,
|
64 |
+
"summary_type": "first",
|
65 |
+
"summary_use_proj": true,
|
66 |
+
"tokens_per_batch": -1,
|
67 |
+
"torch_dtype": "float32",
|
68 |
+
"transformers_version": "4.11.3",
|
69 |
+
"unk_index": 3,
|
70 |
+
"use_lang_emb": true,
|
71 |
+
"vocab_size": 67542,
|
72 |
+
"word_blank": 0,
|
73 |
+
"word_dropout": 0,
|
74 |
+
"word_keep": 0.1,
|
75 |
+
"word_mask": 0.8,
|
76 |
+
"word_mask_keep_rand": "0.8,0.1,0.1",
|
77 |
+
"word_pred": 0.15,
|
78 |
+
"word_rand": 0.1,
|
79 |
+
"word_shuffle": 0
|
80 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.1.0",
|
4 |
+
"transformers": "4.11.3",
|
5 |
+
"pytorch": "1.9.0+cu111"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,-1,0.8421331804431114,0.8416869760988244,0.8201013055498347,0.8248457962104765,0.8196096092481581,0.8244512216225031,0.8060353322288265,0.8091506322469036
|
3 |
+
1,-1,0.8513448967362095,0.8503994530441411,0.834413745956494,0.8384862736560701,0.8336765675696495,0.8374907289345722,0.811316615235727,0.8126457627728096
|
4 |
+
2,-1,0.8508875135232203,0.8503841533445397,0.8383315213061574,0.8429463418408468,0.837788511277248,0.8423807885347474,0.8159904257223058,0.8172796467536205
|
5 |
+
3,-1,0.8515557348073595,0.8509920315079129,0.8357496899907255,0.8406569487936975,0.8351959193076255,0.839760621976266,0.8155446268174728,0.8176035762037067
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f96104c0a7f11fe12dc9e5aca07be9e8fa92e898f97d860ab7a3fa7bdb6f844
|
3 |
+
size 549350969
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
similarity_evaluation_sts-test_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.8267677269950771,0.8305045575670903,0.8078908574038584,0.8148606550646353,0.8083651313892689,0.8148982894839114,0.7676172517049612,0.7573280799977786
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "</s>", "mask_token": "<special1>", "additional_special_tokens": ["<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>"]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "</s>", "mask_token": "<special1>", "additional_special_tokens": ["<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>"], "lang2id": null, "id2lang": null, "do_lowercase_and_remove_accent": true, "do_lowercase": false, "do_lower_case": true, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "inokufu/bertheo", "tokenizer_class": "FlaubertTokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|