File size: 19,653 Bytes
de1d205
6887a13
 
de1d205
6887a13
 
f07c563
de1d205
6887a13
 
 
de1d205
 
 
f07c563
de1d205
 
 
 
 
f07c563
de1d205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6887a13
 
 
f07c563
de1d205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f07c563
de1d205
 
1e39a5b
de1d205
 
 
1e39a5b
de1d205
 
1e39a5b
de1d205
 
 
6daea16
de1d205
 
6daea16
de1d205
 
f4c79c8
de1d205
1e39a5b
f4c79c8
de1d205
f4c79c8
de1d205
 
 
1e39a5b
 
f07c563
de1d205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4fe6eb
de1d205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47956c9
f07c563
de1d205
227e6a4
 
 
 
de1d205
 
f07c563
de1d205
 
 
f07c563
de1d205
f07c563
 
 
 
de1d205
 
f07c563
de1d205
 
 
 
 
 
f07c563
227e6a4
de1d205
227e6a4
de1d205
227e6a4
de1d205
227e6a4
de1d205
227e6a4
de1d205
227e6a4
f07c563
de1d205
f07c563
 
 
de1d205
f07c563
 
 
 
 
 
 
 
 
 
de1d205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f07c563
 
de1d205
 
 
f07c563
de1d205
 
 
 
 
f07c563
de1d205
 
 
 
f07c563
de1d205
 
 
f07c563
de1d205
 
 
 
f07c563
de1d205
 
 
227e6a4
1bdce4c
de1d205
 
227e6a4
de1d205
227e6a4
de1d205
6887a13
de1d205
 
 
 
 
 
6887a13
de1d205
 
6887a13
de1d205
 
 
 
 
 
 
 
 
6887a13
de1d205
c4fe6eb
de1d205
 
 
 
 
 
 
c4fe6eb
1e39a5b
1bacfa9
de1d205
 
 
 
 
 
1e39a5b
f07c563
de1d205
 
 
 
 
 
f07c563
de1d205
f07c563
de1d205
f07c563
de1d205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6daea16
 
 
 
 
 
 
de1d205
 
 
 
 
 
 
 
6daea16
 
 
 
 
 
 
 
de1d205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f07c563
de1d205
 
227e6a4
1bacfa9
227e6a4
de1d205
47956c9
1bacfa9
f07c563
227e6a4
de1d205
47956c9
1bacfa9
 
227e6a4
f07c563
 
 
7f619d7
f07c563
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from typing import Dict, List, Any, Tuple, Optional
import os
import torch
from transformers import AutoTokenizer, PreTrainedTokenizerFast
import pandas as pd
import time
import numpy as np
from precious3_gpt_multi_modal import Precious3MPTForCausalLM


class EndpointHandler:
    def __init__(self, path: str = ""):
        """
        Initializes the EndpointHandler with the specified model type and device.

        Args:
            path (str): Path to the pretrained model directory.
    
        """
        self.device = 'cuda'
        self.path = path
        
        # Load model and tokenizer from path
        self.model = self._load_model(path)
        print('Model loaded')
        
        self.tokenizer = AutoTokenizer.from_pretrained("insilicomedicine/precious3-gpt-multi-modal", trust_remote_code=True)
        print('Tokenizer loaded')
        
        # Set token IDs in model configuration
        self._set_model_token_ids()
        
        # Load unique entities and embeddings
        self.unique_compounds_p3, self.unique_genes_p3 = self._load_unique_entities()
        self.emb_gpt_genes, self.emb_hgt_genes = self._load_embeddings()
        print('Embeddings loaded')

    def _load_model(self, path: str) -> Precious3MPTForCausalLM:
        """ Load model based on specified model type. """
        return Precious3MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device)

    def _set_model_token_ids(self):
        """ Set predefined token IDs in the model config. """
        self.model.config.pad_token_id = self.tokenizer.pad_token_id
        self.model.config.bos_token_id = self.tokenizer.bos_token_id
        self.model.config.eos_token_id = self.tokenizer.eos_token_id

    def _load_unique_entities(self) -> Tuple[List[str], List[str]]:
        """ Load unique entities from online CSV and return lists of compounds and genes. """
        unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
        unique_compounds = [i.strip() for i in unique_entities_p3[unique_entities_p3.type == 'compound'].entity.to_list()]
        unique_genes = [i.strip() for i in unique_entities_p3[unique_entities_p3.type == 'gene'].entity.to_list()]
        return unique_compounds, unique_genes

    def _load_embeddings(self) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        """ Load gene embeddings and return as dictionaries. """
        emb_gpt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_gpt_genes.pickle')
        emb_hgt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_hgt_genes.pickle')
        return (dict(zip(emb_gpt_genes.gene_symbol.tolist(), emb_gpt_genes.embs.tolist())),
                dict(zip(emb_hgt_genes.gene_symbol.tolist(), emb_hgt_genes.embs.tolist())))

    def create_prompt(self, prompt_config: Dict[str, Any]) -> str:
        """
        Create a prompt string based on the provided configuration.

        Args:
            prompt_config (Dict[str, Any]): Configuration dict containing prompt variables.

        Returns:
            str: The formatted prompt string.
        """
        prompt = "[BOS]"
        multi_modal_prefix = '<modality0><modality1><modality2><modality3>' * 3
        
        for k, v in prompt_config.items():
            if k == 'instruction':
                prompt += f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
            elif k == 'up':
                if v:
                    prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
            elif k == 'down':
                if v:
                    prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
            elif k == 'age':
                if isinstance(v, int):
                    prompt += f'<{k}_individ>{v} </{k}_individ>' if prompt_config['species'].strip() == 'human' else f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
            else:
                if v:
                    prompt += f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
                else:
                    prompt += f'<{k}></{k}>'
        
        print('Generated prompt:', prompt)
        return prompt

    def custom_generate(self,
                        input_ids: torch.Tensor, 
                        acc_embs_up_kg_mean: Optional[np.ndarray], 
                        acc_embs_down_kg_mean: Optional[np.ndarray], 
                        acc_embs_up_txt_mean: Optional[np.ndarray], 
                        acc_embs_down_txt_mean: Optional[np.ndarray],
                        device: str, 
                        max_new_tokens: int,
                        mode: str, 
                        temperature: float = 0.8, 
                        top_p: float = 0.2, 
                        top_k: int = 3550, 
                        n_next_tokens: int = 50, 
                        num_return_sequences: int = 1, 
                        random_seed: int = 137) -> Tuple[Dict[str, List], List[List], int]:
        """
        Generate sequences based on input ids and accumulated embeddings.

        Args:
            input_ids (torch.Tensor): Input token IDs for generation.
            acc_embs_up_kg_mean (Optional[np.ndarray]): Accumulated embeddings for UP genes (KG mean).
            acc_embs_down_kg_mean (Optional[np.ndarray]): Accumulated embeddings for DOWN genes (KG mean).
            acc_embs_up_txt_mean (Optional[np.ndarray]): Accumulated embeddings for UP genes (Text mean).
            acc_embs_down_txt_mean (Optional[np.ndarray]): Accumulated embeddings for DOWN genes (Text mean).
            device (str): The device to perform computation on.
            max_new_tokens (int): Maximum number of new tokens to generate.
            mode (str): Mode of generation to determine behavior.
            temperature (float): Temperature for randomness in sampling.
            top_p (float): Top-p (nucleus) sampling threshold.
            top_k (int): Top-k sampling threshold.
            n_next_tokens (int): Number of tokens to consider for predicting compounds.
            num_return_sequences (int): Number of sequences to return.
            random_seed (int): Random seed for reproducibility.

        Returns:
            Tuple[Dict[str, List], List[List], int]: Processed outputs, predicted compounds, and the random seed.
        """
        torch.manual_seed(random_seed)

        # Prepare modality embeddings
        modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) if isinstance(acc_embs_up_kg_mean, np.ndarray) else None
        modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device) if isinstance(acc_embs_down_kg_mean, np.ndarray) else None
        modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) if isinstance(acc_embs_up_txt_mean, np.ndarray) else None
        modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device) if isinstance(acc_embs_down_txt_mean, np.ndarray) else None
        
        # Initialize outputs
        outputs = []
        next_token_compounds = []
        next_token_up_genes = [] 
        next_token_down_genes = []

        # Generate requested sequences
        for _ in range(num_return_sequences):
            start_time = time.time()
            generated_sequence = []
            current_token = input_ids.clone()
            next_token = current_token[0][-1]
            generated_tokens_counter = 0

            while generated_tokens_counter < max_new_tokens - 1:
                # Stop if EOS token is generated
                if next_token == self.tokenizer.eos_token_id:
                    generated_sequence.append(current_token)
                    break
                
                # Forward pass through the model
                logits = self.model.forward(
                    input_ids=current_token,
                    modality0_emb=modality0_emb,
                    modality0_token_id=self.tokenizer.encode('<modality0>')[0],
                    modality1_emb=modality1_emb,
                    modality1_token_id=self.tokenizer.encode('<modality1>')[0],
                    modality2_emb=modality2_emb,
                    modality2_token_id=self.tokenizer.encode('<modality2>')[0],
                    modality3_emb=modality3_emb,
                    modality3_token_id=self.tokenizer.encode('<modality3>')[0],
                )[0]

                # Adjust logits based on temperature
                if temperature != 1.0:
                    logits = logits / temperature

                # Apply nucleus sampling (top-p)
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p

                if top_k > 0:
                    sorted_indices_to_remove[..., top_k:] = 1

                inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
                logits = logits.where(sorted_indices_to_remove, inf_tensor)

                # Handle sampling based on current token
                if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds) == 0:
                    next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][-1, :].flatten(), n_next_tokens).indices)

                if current_token[0][-1] == self.tokenizer.encode('<up>')[0] and len(next_token_up_genes) == 0:
                    TODO: SET N-NEXT-TOKENS AS PARAM FOR GENES
                    n_next_tokens_4_genes = 250
                    top_k_up_genes = torch.topk(torch.softmax(logits, dim=-1)[0][-1, :].flatten(), n_next_tokens_4_genes).indices
                    next_token_up_genes.append(top_k_up_genes)
                    generated_tokens_counter += len(top_k_up_genes)
                    current_token = torch.cat((current_token, top_k_up_genes.unsqueeze(0), 
                                               torch.tensor([self.tokenizer.encode('</up>')[0]]).unsqueeze(0).to(device)), dim=-1)
                    continue

                if current_token[0][-1] == self.tokenizer.encode('<down>')[0] and len(next_token_down_genes) == 0:
                    TODO: SET N-NEXT-TOKENS AS PARAM FOR GENES
                    n_next_tokens_4_genes = 250
                    top_k_down_genes = torch.topk(torch.softmax(logits, dim=-1)[0][-1, :].flatten(), n_next_tokens_4_genes).indices
                    next_token_down_genes.append(top_k_down_genes)
                    generated_tokens_counter += len(top_k_down_genes)
                    current_token = torch.cat((current_token, top_k_down_genes.unsqueeze(0), 
                                               torch.tensor([self.tokenizer.encode('</down>')[0]]).unsqueeze(0).to(device)), dim=-1)
                    continue

                # Sample the next token
                next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[-1, :].unsqueeze(0)
                current_token = torch.cat((current_token, next_token), dim=-1)
                generated_tokens_counter += 1

            print("Generation time:", time.time() - start_time)
            outputs.append(generated_sequence)
        
        # Process generated results
        processed_outputs = self.process_generated_outputs(next_token_up_genes, next_token_down_genes, mode)

        predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
        predicted_compounds = [[i.strip() for i in j] for j in predicted_compounds_ids]
        
        return processed_outputs, predicted_compounds, random_seed

    def process_generated_outputs(self, next_token_up_genes: List[List], next_token_down_genes: List[List], mode: str) -> Dict[str, List]:
        """
        Process generated outputs for UP and DOWN genes based on the mode.

        Args:
            next_token_up_genes (List[List]): List of tokens generated for UP genes.
            next_token_down_genes (List[List]): List of tokens generated for DOWN genes.
            mode (str): Generation mode.

        Returns:
            Dict[str, List]: Processed outputs based on the model mode.
        """
        processed_outputs = {"up": [], "down": []}
        if mode in ['meta2diff', 'meta2diff2compound']:
            processed_outputs['up'] = self._get_unique_genes(next_token_up_genes)
            processed_outputs['down'] = self._get_unique_genes(next_token_down_genes)
        else:
            processed_outputs = {"generated_sequences": []}  # Placeholder if not specific mode
        
        return processed_outputs

    def _get_unique_genes(self, tokens: List[List]) -> List[List[str]]:
        """ 
        Get unique gene symbols from generated tokens.
        
        Args:
            tokens (List[List]): List of token IDs.

        Returns:
            List[List[str]]: List of unique gene symbols for each token sequence.
        """
        predicted_genes = []
        predicted_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in tokens]
        for j in predicted_genes_tokens:
            generated_sample = [i.strip() for i in j]
            # Intersection with existing genes to validate
            predicted_genes.append(sorted(set(generated_sample) & set(self.unique_genes_p3), key=generated_sample.index))
        return predicted_genes

    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Handles incoming requests to the endpoint, processing data and generating responses.

        Args:
            data (Dict[str, Any]): The payload with the text prompt and generation parameters.

        Returns:
            Dict[str, Any]: The resulting output dictionary for the request.
        """
        data = data.copy()
        parameters = data.pop("parameters", None)
        config_data = data.pop("inputs", None)
        mode = data.pop('mode', 'Not specified')

        config_data_copy = config_data.copy()

        prompt = self.create_prompt(config_data_copy)
        if mode != "diff2compound":
            prompt += "<up>"
        
        inputs = self.tokenizer(prompt, return_tensors="pt")
        
        if 3 in inputs['input_ids'][0]:
            decoded_tokens = self.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
            print(f"\n>>> Warning! There are unknown tokens in prompt: {''.join(decoded_tokens)} \n")
        
        input_ids = inputs["input_ids"].to(self.device)

        max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])

        acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean = self._get_accumulated_embeddings(config_data)

        generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(
            input_ids=input_ids, 
            acc_embs_up_kg_mean=acc_embs_up1_mean,
            acc_embs_down_kg_mean=acc_embs_down1_mean, 
            acc_embs_up_txt_mean=acc_embs_up2_mean,
            acc_embs_down_txt_mean=acc_embs_down2_mean,
            max_new_tokens=max_new_tokens, mode=mode,
            device=self.device, **parameters
        )
        
        next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key=i.index) for i in raw_next_token_generation]

        out = self._prepare_output(generated_sequence, next_token_generation, mode, prompt, out_seed)
        
        return out

    def _get_accumulated_embeddings(self, config_data: Dict[str, List[str]]) -> Tuple[Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray]]:
        """
        Retrieve accumulated embeddings for UP and DOWN genes.

        Args:
            config_data (Dict[str, List[str]]): Configuration dictionary with gene information.

        Returns:
            Tuple[Optional[np.ndarray], ...]: Mean accumulated embeddings for UP and DOWN genes.
        """
        acc_embs_up1 = []
        acc_embs_up2 = []
        if 'up' in config_data:
            for gs in config_data['up']: 
                try:
                    acc_embs_up1.append(self.emb_hgt_genes[gs])
                    acc_embs_up2.append(self.emb_gpt_genes[gs])
                except Exception as e: 
                    pass

        
        acc_embs_up1_mean = np.array(acc_embs_up1).mean(0) if acc_embs_up1 else None
        acc_embs_up2_mean = np.array(acc_embs_up2).mean(0) if acc_embs_up2 else None

        acc_embs_down1 = []
        acc_embs_down2 = []
        if 'down' in config_data:
            for gs in config_data['down']:
                try:
                    acc_embs_down1.append(self.emb_hgt_genes[gs])
                    acc_embs_down2.append(self.emb_gpt_genes[gs])
                except Exception as e: 
                    pass
            # for gs in config_data['down']:
            #     acc_embs_down1.append(self.emb_hgt_genes.get(gs))
            #     acc_embs_down2.append(self.emb_gpt_genes.get(gs))

        acc_embs_down1_mean = np.array(acc_embs_down1).mean(0) if acc_embs_down1 else None
        acc_embs_down2_mean = np.array(acc_embs_down2).mean(0) if acc_embs_down2 else None

        return acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean

    def _prepare_output(self, generated_sequence: Any, next_token_generation: List[List], mode: str, prompt: str, out_seed: int) -> Dict[str, Any]:
        """
        Prepare the output dictionary based on the mode of operation.

        Args:
            generated_sequence (Any): The generated sequences from the model.
            next_token_generation (List[List]): The next tokens generated.
            mode (str): Mode of operation.
            prompt (str): The input prompt that was used.
            out_seed (int): Random seed used in generation.

        Returns:
            Dict[str, Any]: Output dictionary with structured results.
        """
        try:
            outputs = {}
            if mode == "meta2diff":
                    outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
                    out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
            elif mode == "meta2diff2compound":
                outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
                out = {
                "output": outputs, "compounds": next_token_generation, "mode": mode, 
                    "message": "Done!", "input": prompt, 'random_seed': out_seed}
            elif mode == "diff2compound":
                outputs = generated_sequence
                out = {
                "output": outputs, "compounds": next_token_generation, "mode": mode, 
                    "message": "Done!", "input": prompt, 'random_seed': out_seed}
            else:
                out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}

        except Exception as e:
            print(e)
            outputs, next_token_generation = [None], [None]
            out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 137}

        return out