File size: 23,850 Bytes
6887a13
 
91696a4
 
 
 
6887a13
 
 
91696a4
 
 
 
 
 
 
6887a13
9cb7de4
 
 
 
 
 
6887a13
 
 
15ad934
91696a4
 
 
 
ada0c6a
91696a4
 
 
 
 
15ad934
91696a4
6887a13
 
91696a4
 
6887a13
 
 
 
 
 
91696a4
 
6887a13
 
 
 
 
91696a4
6887a13
 
 
91696a4
6887a13
 
91696a4
 
6887a13
91696a4
6887a13
91696a4
 
6887a13
91696a4
 
6887a13
 
91696a4
6887a13
 
 
 
 
 
 
91696a4
 
 
 
 
6887a13
 
 
 
91696a4
 
 
 
 
 
 
 
 
6887a13
 
 
91696a4
 
 
 
 
 
 
 
 
 
6887a13
 
 
 
 
 
 
 
91696a4
6887a13
 
 
91696a4
 
 
6887a13
91696a4
 
6887a13
91696a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6887a13
 
91696a4
 
 
6887a13
91696a4
 
 
6887a13
 
91696a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6887a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91696a4
 
 
 
 
6887a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91696a4
6887a13
 
 
91696a4
6887a13
 
 
 
 
 
91696a4
6887a13
 
 
 
 
 
 
 
 
 
 
 
 
91696a4
 
6887a13
 
 
 
 
 
91696a4
6887a13
91696a4
 
 
 
6887a13
 
 
91696a4
6887a13
 
 
 
 
91696a4
6887a13
 
 
91696a4
6887a13
 
 
 
 
 
91696a4
6887a13
 
 
 
 
91696a4
6887a13
91696a4
6887a13
 
 
 
 
91696a4
 
 
 
 
 
 
 
 
 
 
 
6887a13
91696a4
 
 
 
 
 
6887a13
91696a4
 
 
 
 
 
 
 
 
 
 
 
6887a13
91696a4
 
 
6887a13
91696a4
6887a13
 
 
91696a4
6887a13
 
 
 
 
91696a4
6887a13
 
 
 
 
 
 
 
 
 
91696a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6887a13
 
91696a4
6887a13
91696a4
 
 
 
 
 
 
 
 
 
6887a13
 
 
 
 
 
 
 
 
91696a4
6887a13
 
 
 
 
 
91696a4
6887a13
 
 
 
91696a4
6887a13
 
 
 
 
91696a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
from typing import Optional, Tuple, Union, List

import logging
import math
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedTokenizerFast
from transformers.modeling_outputs import (
    CausalLMOutputWithCrossAttentions,
    CausalLMOutputWithPast,
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPast,
)

from mpt_7b.modeling_mpt import MPTModel, MPTForCausalLM, gen_attention_mask_in_length
from mpt_7b.configuration_mpt import MPTConfig
from mpt_7b.blocks import MPTBlock
from mpt_7b.norm import NORM_CLASS_REGISTRY
from mpt_7b.custom_embedding import SharedEmbedding
from mpt_7b.attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes

log = logging.getLogger(__name__)


class Custom_MptModel(MPTModel):
    """
    Custom MPT Model that extends the base MPTModel with additional functionalities
    for handling multimodal embeddings and custom projections.

    Args:
        config (MPTConfig): Configuration object containing model parameters.
        modality0_dim (int): Dimension for the first modality embedding.
        modality2_dim (int): Dimension for the second modality embedding.
    """

    def __init__(self, config: MPTConfig, modality0_dim: int = 128, modality2_dim: int = 1536):
        config._validate_config()
        super().__init__(config)

        # Initialize model parameters based on the configuration
        self.attn_impl = config.attn_config['attn_impl']
        self.prefix_lm = config.attn_config['prefix_lm']
        self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
        self.alibi = config.attn_config['alibi']
        self.alibi_bias_max = config.attn_config['alibi_bias_max']
        self.learned_pos_emb = config.learned_pos_emb

        # Set initialization device
        if config.init_device == 'mixed':
            if dist.get_local_rank() == 0:
                config.init_device = 'cpu'
            else:
                config.init_device = 'meta'
                
        if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
            norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
            raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
        
        norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
        self.embedding_fraction = config.embedding_fraction
      
        # Initialize embeddings
        self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
        
        if self.learned_pos_emb:
            self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
        
        self.emb_drop = nn.Dropout(config.emb_pdrop)
        
        # Initialize model blocks
        self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
        self.norm_f = norm_class(config.d_model, device=config.init_device)

        # Freeze all parameters except the projection layer
        for param in self.wte.parameters():
            param.requires_grad = False

        for param in self.blocks.parameters():
            param.requires_grad = False

        # Initialize projections for different modalities
        self.modality0_embedding_projection = self._create_modal_projection(modality0_dim)
        self.modality2_embedding_projection = self._create_modal_projection(modality2_dim)

        # Other configurations
        self.rope = config.attn_config['rope']
        self.rope_impl = None
        if self.rope:
            self.rope_impl = config.attn_config['rope_impl']
            self.rotary_embedding = gen_rotary_embedding(
                rope_head_dim=config.d_model // config.n_heads,
                rope_impl=self.rope_impl,
                rope_theta=config.attn_config['rope_theta'],
                rope_dail_config=config.attn_config['rope_dail_config'],
                rope_hf_config=config.attn_config['rope_hf_config'],
                max_seq_len=self.config.max_seq_len
            )

        self.is_causal = not self.prefix_lm
        self._attn_bias_initialized = False
        self.attn_bias = None
        self.attn_bias_shape = attn_bias_shape(
            self.attn_impl,
            config.n_heads,
            config.max_seq_len,
            self.alibi,
            prefix_lm=self.prefix_lm,
            causal=self.is_causal,
            use_sequence_id=self.attn_uses_sequence_id
        )
        
        if config.no_bias:
            for module in self.modules():
                if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
                    log.info(f'Removing bias from module={module!r}.')
                    module.register_parameter('bias', None)
                if hasattr(module, 'use_bias'):
                    log.info(f'Setting use_bias=False for module={module!r}.')
                    module.use_bias = False
                    
        log.debug(self)
        log.debug(f"Using {self.config.init_config['name']} initialization.")

    def _create_modal_projection(self, modality_dim: int) -> nn.ModuleList:
        """
        Create a projection layer for a given modality.
        
        Args:
            modality_dim (int): Dimension of the modality embedding.
        
        Returns:
            nn.ModuleList: A module list containing layers for modal projection.
        """
        return nn.ModuleList([
            nn.Linear(modality_dim, self.config.d_model),
            nn.ReLU(),
            nn.Linear(self.config.d_model, self.config.d_model),
            nn.ReLU(),
            nn.Linear(self.config.d_model, self.config.d_model)
        ])

    def get_input_embeddings(self) -> nn.Embedding:
        """
        Get the input word embeddings.

        Returns:
            nn.Embedding: The word token embeddings.
        """
        return self.wte

    def set_input_embeddings(self, new_embeddings: nn.Parameter):
        """
        Set the input word embeddings with new embeddings.

        Args:
            new_embeddings (nn.Parameter): The new word embeddings to set.
        """
        self.wte.weight = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
        attention_mask: Optional[torch.ByteTensor] = None,
        prefix_mask: Optional[torch.ByteTensor] = None,
        sequence_id: Optional[torch.LongTensor] = None,
        return_dict: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        modality0_emb: Optional[bool] = None,
        modality0_token_id: Optional[bool] = None,
        modality1_emb: Optional[bool] = None,
        modality1_token_id: Optional[bool] = None,
        modality2_emb: Optional[bool] = None,
        modality2_token_id: Optional[bool] = None,
        modality3_emb: Optional[bool] = None,
        modality3_token_id: Optional[bool] = None
    ) -> BaseModelOutputWithPast:
        """
        Forward pass for the model, processing input through the network.

        Args:
            input_ids (Optional[torch.LongTensor]): Input tensor representing token IDs.
            past_key_values (Optional[List[Tuple[torch.FloatTensor]]]): Past key values for cache.
            attention_mask (Optional[torch.ByteTensor]): Attention mask to avoid attention to padding tokens.
            prefix_mask (Optional[torch.ByteTensor]): Mask for the prefix input.
            sequence_id (Optional[torch.LongTensor]): Sequence ID for token sequences.
            return_dict (Optional[bool]): Whether to return a dict or a tuple.
            output_attentions (Optional[bool]): Whether to output attention weights.
            output_hidden_states (Optional[bool]): Whether to output hidden states.
            use_cache (Optional[bool]): Whether to cache past key values.
            inputs_embeds (Optional[torch.Tensor]): Input tensor representing embeddings.
            modality0_emb (Optional[bool]): Modality 0 (KG UP genes) embedding.
            modality0_token_id (Optional[bool]): Token ID for modality 0.
            modality1_emb (Optional[bool]): Modality 1 (KG DOWN genes) embedding.
            modality1_token_id (Optional[bool]): Token ID for modality 1.
            modality2_emb (Optional[bool]): Modality 2 (TEXT UP genes) embedding.
            modality2_token_id (Optional[bool]): Token ID for modality 2.
            modality3_emb (Optional[bool]): Modality 3 (TEXT DOWN genes) embedding.
            modality3_token_id (Optional[bool]): Token ID for modality 3.

        Returns:
            BaseModelOutputWithPast: Model output containing last hidden state and optional details.
        """
        return_dict = return_dict if return_dict is not None else self.config.return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if attention_mask is not None:
            attention_mask = attention_mask.bool()
        if prefix_mask is not None:
            prefix_mask = prefix_mask.bool()
        if not return_dict:
            raise NotImplementedError('return_dict False is not implemented yet for MPT')
        if output_attentions:
            if self.attn_impl != 'torch':
                raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
        if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
            raise NotImplementedError('MPT does not support training with left padding.')
        if self.prefix_lm and prefix_mask is None:
            raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
        if self.training:
            if self.attn_uses_sequence_id and sequence_id is None:
                raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
            elif self.attn_uses_sequence_id is False and sequence_id is not None:
                warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')

        # Process modality embeddings for each modality
        self._process_modalities(modality0_emb, modality0_token_id, self.modality0_embedding_projection)
        self._process_modalities(modality1_emb, modality1_token_id, self.modality0_embedding_projection)
        self._process_modalities(modality2_emb, modality2_token_id, self.modality2_embedding_projection)
        self._process_modalities(modality3_emb, modality3_token_id, self.modality2_embedding_projection)

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError('You cannot specify both input_ids and inputs_embeds.')
        elif input_ids is not None:
            bsz = input_ids.size(0)
            S = input_ids.size(1)
            x = self.wte(input_ids)
            input_device = input_ids.device
        elif inputs_embeds is not None:
            bsz = inputs_embeds.size(0)
            S = inputs_embeds.size(1)
            x = inputs_embeds
            input_device = inputs_embeds.device
        else:
            raise ValueError('You must specify input_ids or inputs_embeds')

        assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
        rotary_emb_w_meta_info = None
        past_position = 0

        if past_key_values is not None:
            if len(past_key_values) != self.config.n_layers:
                raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
            past_position = past_key_values[0][0].size(1)
            if self.attn_impl == 'torch':
                past_position = past_key_values[0][0].size(3)

        if self.learned_pos_emb or self.rope:
            if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
                raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
            if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
                pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
                if attention_mask is not None:
                    pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
                if self.learned_pos_emb:
                    x = x + self.wpe(pos)
                elif self.rope and self.rope_impl == 'hf':
                    rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
            elif self.rope and self.rope_impl == 'dail':
                rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}

        # Handle embedding fraction
        if self.embedding_fraction == 1:
            x = self.emb_drop(x)
        else:
            x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
            assert isinstance(self.emb_drop, nn.Module)
            x = self.emb_drop(x_shrunk)

        (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
        attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S,
                                                                  attn_uses_sequence_id=self.attn_uses_sequence_id,
                                                                  attn_impl=self.attn_impl,
                                                                  attention_mask=attention_mask)
        alibi_slopes = None
        if self.alibi and self.attn_impl == 'flash':
            alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)

        presents = () if use_cache else None
        if use_cache and past_key_values is None:
            past_key_values = [() for _ in range(self.config.n_layers)]
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        flash_attn_padding_info = {}
        if self.attn_impl == 'flash':
            flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
            
        for (b_idx, block) in enumerate(self.blocks):
            if output_hidden_states:
                assert all_hidden_states is not None
                all_hidden_states = all_hidden_states + (x,)
            past_key_value = past_key_values[b_idx] if past_key_values is not None else None
            (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)

            if presents is not None:
                presents += (present,)
            if output_attentions:
                assert all_self_attns is not None
                all_self_attns = all_self_attns + (attn_weights,)
                
        x = self.norm_f(x)

        if output_hidden_states:
            assert all_hidden_states is not None
            all_hidden_states = all_hidden_states + (x,)
        return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)

    def _process_modalities(self, modality_emb: Optional[bool], token_id: Optional[bool], projection: nn.ModuleList):
        """
        Process the modality embedding if provided, updating the input embeddings.

        Args:
            modality_emb (Optional[bool]): The modality embedding to process.
            token_id (Optional[bool]): The token ID for the modality.
            projection (nn.ModuleList): The projection layers for the modality.
        """
        if modality_emb is not None:
            modality_emb = torch.tensor(modality_emb, dtype=torch.bfloat16)
            hidden_states = self.wte.weight.detach()

            for layer in projection:
                modality_emb = layer(modality_emb)

            proj_modality_emb = modality_emb
            hidden_states[token_id, :] = torch.mean(torch.squeeze(proj_modality_emb, 1), dim=0)
            self.set_input_embeddings(torch.nn.Parameter(hidden_states))


class Precious3MPTForCausalLM(MPTForCausalLM):
    """
    Precious3 MPT For Causal Language Modeling that utilizes the Custom_MptModel.

    Args:
        config (MPTConfig): Configuration object for the model.
        modality0_dim (int): Dimension for the first modality embedding.
        modality2_dim (int): Dimension for the second modality embedding.
    """

    def __init__(self, config: MPTConfig, modality0_dim: int = 128, modality2_dim: int = 1536):
        super().__init__(config)
        
        # Pass the modalities dimensions to Custom_MptModel
        self.transformer: MPTModel = Custom_MptModel(config, modality0_dim=modality0_dim, modality2_dim=modality2_dim)
        self.lm_head = None

        if not config.tie_word_embeddings:
            self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
            self.lm_head._fsdp_wrap = True
            
        for child in self.transformer.children():
            if isinstance(child, torch.nn.ModuleList):
                continue
            if isinstance(child, torch.nn.Module):
                child._fsdp_wrap = True
                
        self.logit_scale = None
        if config.logit_scale is not None:
            logit_scale = config.logit_scale
            if isinstance(logit_scale, str):
                if logit_scale == 'inv_sqrt_d_model':
                    logit_scale = 1 / math.sqrt(config.d_model)
                else:
                    raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
            self.logit_scale = logit_scale
            
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
        attention_mask: Optional[torch.ByteTensor] = None,
        prefix_mask: Optional[torch.ByteTensor] = None,
        sequence_id: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        return_dict: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        modality0_emb: Optional[bool] = None,
        modality0_token_id: Optional[bool] = None,
        modality1_emb: Optional[bool] = None,
        modality1_token_id: Optional[bool] = None,
        modality2_emb: Optional[bool] = None,
        modality2_token_id: Optional[bool] = None,
        modality3_emb: Optional[bool] = None,
        modality3_token_id: Optional[bool] = None
    ) -> CausalLMOutputWithPast:
        """
        Forward pass through the causal language model.

        Args:
            input_ids (Optional[torch.LongTensor]): Input tensor for token IDs.
            past_key_values (Optional[List[Tuple[torch.FloatTensor]]]): Past key values for cached states.
            attention_mask (Optional[torch.ByteTensor]): Attention mask to prevent attention to padding tokens.
            prefix_mask (Optional[torch.ByteTensor]): Mask for prefix inputs.
            sequence_id (Optional[torch.LongTensor]): Sequence ID tensor.
            labels (Optional[torch.LongTensor]): Labels for the loss computation, if applicable.
            return_dict (Optional[bool]): Whether to return outputs as a dict or tuple.
            output_attentions (Optional[bool]): Whether to return attention weights.
            output_hidden_states (Optional[bool]): Whether to return hidden states.
            use_cache (Optional[bool]): Whether to cache past key values.
            inputs_embeds (Optional[torch.FloatTensor]): Input tensor for embeddings.
            modality0_emb (Optional[bool]): Input for modality 0.
            modality0_token_id (Optional[bool]): Token ID for modality 0.
            modality1_emb (Optional[bool]): Input for modality 1.
            modality1_token_id (Optional[bool]): Token ID for modality 1.
            modality2_emb (Optional[bool]): Input for modality 2.
            modality2_token_id (Optional[bool]): Token ID for modality 2.
            modality3_emb (Optional[bool]): Input for modality 3.
            modality3_token_id (Optional[bool]): Token ID for modality 3.

        Returns:
            CausalLMOutputWithPast: Causal language model output containing logits and past key values.
        """
        return_dict = return_dict if return_dict is not None else self.config.return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        
        outputs = self.transformer(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            prefix_mask=prefix_mask,
            sequence_id=sequence_id,
            return_dict=return_dict,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            inputs_embeds=inputs_embeds,
            modality0_emb=modality0_emb,
            modality0_token_id=modality0_token_id,
            modality1_emb=modality1_emb,
            modality1_token_id=modality1_token_id,
            modality2_emb=modality2_emb,
            modality2_token_id=modality2_token_id,
            modality3_emb=modality3_emb,
            modality3_token_id=modality3_token_id
        )

        if self.lm_head is not None:
            logits = self.lm_head(outputs.last_hidden_state)
        else:
            out = outputs.last_hidden_state
            out = out.to(self.transformer.wte.weight.device)
            logits = self.transformer.wte(out, True)

        if self.logit_scale is not None:
            if self.logit_scale == 0:
                warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
            logits *= self.logit_scale

        loss = None
        if labels is not None:
            _labels = torch.roll(labels, shifts=-1)
            _labels[:, -1] = -100
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))

        return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)