File size: 1,870 Bytes
28ce2a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4018
- Accuracy: 0.8207
- Precision: 0.8202
- Recall: 0.8207
- F1: 0.8202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4749 | 1.0 | 417 | 0.4018 | 0.8207 | 0.8202 | 0.8207 | 0.8202 |
| 0.0976 | 2.0 | 834 | 0.4443 | 0.8189 | 0.8234 | 0.8189 | 0.8197 |
| 0.0061 | 3.0 | 1251 | 0.7378 | 0.8213 | 0.8233 | 0.8213 | 0.8219 |
| 0.3159 | 4.0 | 1668 | 0.9154 | 0.8094 | 0.8092 | 0.8094 | 0.8092 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|