--- license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: test results: [] --- # test This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4018 - Accuracy: 0.8207 - Precision: 0.8202 - Recall: 0.8207 - F1: 0.8202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4749 | 1.0 | 417 | 0.4018 | 0.8207 | 0.8202 | 0.8207 | 0.8202 | | 0.0976 | 2.0 | 834 | 0.4443 | 0.8189 | 0.8234 | 0.8189 | 0.8197 | | 0.0061 | 3.0 | 1251 | 0.7378 | 0.8213 | 0.8233 | 0.8213 | 0.8219 | | 0.3159 | 4.0 | 1668 | 0.9154 | 0.8094 | 0.8092 | 0.8094 | 0.8092 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0