File size: 1,735 Bytes
29af958 68f73a0 29af958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: dmis-lab/biobert-base-cased-v1.2
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: NHS-dmis-binary-512
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NHS-dmis-binary-512
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4235
- Accuracy: 0.8125
- Precision: 0.8080
- Recall: 0.8104
- F1: 0.8090
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0493 | 1.0 | 397 | 0.4334 | 0.8145 | 0.8078 | 0.8140 | 0.8100 |
| 0.0637 | 2.0 | 794 | 0.5025 | 0.7773 | 0.7959 | 0.8004 | 0.7772 |
| 3.1195 | 3.0 | 1191 | 0.5155 | 0.8240 | 0.8176 | 0.8184 | 0.8180 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|