intermezzo672
commited on
NHS-pubmedbert-multi
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: NHS-pubmedbert-multi
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# NHS-pubmedbert-multi
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8814
|
24 |
+
- Accuracy: 0.7148
|
25 |
+
- Precision: 0.7181
|
26 |
+
- Recall: 0.7148
|
27 |
+
- F1: 0.7151
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 6
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
58 |
+
| 0.0855 | 1.0 | 397 | 0.7355 | 0.7192 | 0.7254 | 0.7192 | 0.7212 |
|
59 |
+
| 0.0541 | 2.0 | 794 | 0.7926 | 0.7180 | 0.7181 | 0.7180 | 0.7036 |
|
60 |
+
| 0.2545 | 3.0 | 1191 | 0.8814 | 0.7148 | 0.7181 | 0.7148 | 0.7151 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.38.2
|
66 |
+
- Pytorch 2.2.1+cu121
|
67 |
+
- Datasets 2.18.0
|
68 |
+
- Tokenizers 0.15.2
|
runs/Mar21_04-16-08_00e0ea23ef6f/events.out.tfevents.1710994574.00e0ea23ef6f.230.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ef433c8e1eec74d82ff01900519a01879038dc27310c11a8bfcab5ebe46bb2f
|
3 |
+
size 257892
|