File size: 970 Bytes
bfe4797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
---
{}
---
### Company_Sentiment_Analysis

**Description:** Analyze customer opinions, feedback, and reviews about the company software, websites, and IT services to gain insights and improve products and services

## How to Use
Here is how to use this model to classify text into different categories:

        from transformers import AutoModelForSequenceClassification, AutoTokenizer
        
        model_name = "interneuronai/company_sentiment_analysis_bart"
        model = AutoModelForSequenceClassification.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        
        def classify_text(text):
            inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
            outputs = model(**inputs)
            predictions = outputs.logits.argmax(-1)
            return predictions.item()
        
        text = "Your text here"
        print("Category:", classify_text(text))