DLight1551 commited on
Commit
aa1f2ea
·
1 Parent(s): 5eeee0c

add new model

Browse files
README.md CHANGED
@@ -1,3 +1,68 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: other
3
+ pipeline_tag: visual-question-answering
4
  ---
5
+
6
+
7
+ <p align="center">
8
+ <img src="logo_en.png" width="400"/>
9
+ <p>
10
+
11
+ <p align="center">
12
+ <b><font size="6">InternLM-XComposer2</font></b>
13
+ <p>
14
+
15
+ <div align="center">
16
+
17
+ [💻Github Repo](https://github.com/InternLM/InternLM-XComposer)
18
+
19
+ [Paper](https://arxiv.org/abs/2401.16420)
20
+
21
+ </div>
22
+
23
+ **InternLM-XComposer2** is a vision-language large model (VLLM) based on [InternLM2](https://github.com/InternLM/InternLM) for advanced text-image comprehension and composition.
24
+
25
+ We release InternLM-XComposer2 series in two versions:
26
+
27
+ - InternLM-XComposer2-VL: The pretrained VLLM model with InternLM2 as the initialization of the LLM, achieving strong performance on various multimodal benchmarks.
28
+ - InternLM-XComposer2: The finetuned VLLM for *Free-from Interleaved Text-Image Composition*.
29
+
30
+
31
+ ### Import from Transformers
32
+ To load the InternLM-XComposer2-VL-1.8B model using Transformers, use the following code:
33
+ ```python
34
+ import torch
35
+ from transformers import AutoTokenizer, AutoModelForCausalLM
36
+ ckpt_path = "internlm/internlm-xcomposer2-vl-1_8b"
37
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True).cuda()
38
+ # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
39
+ model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
40
+ model = model.eval()
41
+ ```
42
+
43
+ ## Quickstart
44
+ We provide a simple example to show how to use InternLM-XComposer with 🤗 Transformers.
45
+ ```python
46
+ import torch
47
+ from transformers import AutoModel, AutoTokenizer
48
+
49
+ torch.set_grad_enabled(False)
50
+
51
+ # init model and tokenizer
52
+ model = AutoModel.from_pretrained('internlm/internlm-xcomposer2-vl-1_8b', trust_remote_code=True).cuda().eval()
53
+ tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2-vl-1_8b', trust_remote_code=True)
54
+
55
+ query = '<ImageHere>Please describe this image in detail.'
56
+ image = './image1.webp'
57
+ with torch.cuda.amp.autocast():
58
+ response, _ = model.chat(tokenizer, query=query, image=image, history=[], do_sample=False)
59
+ print(response)
60
+ # The image is a captivating photograph of a sunset over a mountainous landscape. The sky, painted in hues of orange and pink,
61
+ # serves as a backdrop for two silhouetted figures standing on the mountain. The text on the image, written in white, is a quote
62
+ # from Oscar Wilde, which reads, "Live life with no excuses, travel with no regret." This quote, combined with the serene setting,
63
+ # serves as a powerful reminder to embrace life's journey without hesitation or regret.
64
+
65
+ ```
66
+
67
+ ### Open Source License
68
+ The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact [email protected].
build_mlp.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import re
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from transformers import CLIPVisionModel
7
+
8
+
9
+ def build_vision_tower():
10
+ vision_tower = 'openai/clip-vit-large-patch14-336'
11
+ return CLIPVisionTower(vision_tower)
12
+
13
+
14
+ def build_vision_projector():
15
+ projector_type = 'mlp2x_gelu'
16
+ mm_hidden_size = 1024
17
+ hidden_size = 2048
18
+
19
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
20
+ if mlp_gelu_match:
21
+ mlp_depth = int(mlp_gelu_match.group(1))
22
+ modules = [nn.Linear(mm_hidden_size, hidden_size)]
23
+ for _ in range(1, mlp_depth):
24
+ modules.append(nn.GELU())
25
+ modules.append(nn.Linear(hidden_size, hidden_size))
26
+ return nn.Sequential(*modules)
27
+
28
+ if projector_type == 'identity':
29
+ return IdentityMap()
30
+
31
+ raise ValueError(f'Unknown projector type: {projector_type}')
32
+
33
+
34
+ class IdentityMap(nn.Module):
35
+
36
+ def __init__(self):
37
+ super().__init__()
38
+
39
+ def forward(self, x, *args, **kwargs):
40
+ return x
41
+
42
+ @property
43
+ def config(self):
44
+ return {'mm_projector_type': 'identity'}
45
+
46
+
47
+ class CLIPVisionTower(nn.Module):
48
+
49
+ def __init__(self, vision_tower):
50
+ super().__init__()
51
+
52
+ self.is_loaded = False
53
+ self.is_resize_pos = False
54
+
55
+ self.vision_tower_name = vision_tower
56
+ self.select_layer = -1
57
+ self.select_feature = 'patch'
58
+ self.load_model()
59
+ self.resize_pos()
60
+
61
+ def load_model(self):
62
+ self.vision_tower = CLIPVisionModel.from_pretrained(
63
+ self.vision_tower_name)
64
+ self.vision_tower.requires_grad_(False)
65
+
66
+ self.is_loaded = True
67
+
68
+ def resize_pos(self):
69
+ pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
70
+ pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
71
+ orig_size = 24
72
+ new_size = 35
73
+
74
+ if pos_embed_checkpoint.shape[1] == new_size**2 + 1:
75
+ self.is_resize_pos = True
76
+ else:
77
+ embedding_size = pos_embed_checkpoint.shape[-1]
78
+ num_extra_tokens = 1
79
+ new_num = new_size**2 + num_extra_tokens
80
+ #print('Position interpolate from %dx%d to %dx%d' %
81
+ # (orig_size, orig_size, new_size, new_size))
82
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
83
+ # only the position tokens are interpolated
84
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
85
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
86
+ embedding_size).permute(
87
+ 0, 3, 1, 2)
88
+ pos_tokens = torch.nn.functional.interpolate(
89
+ pos_tokens,
90
+ size=(new_size, new_size),
91
+ mode='bicubic',
92
+ align_corners=False)
93
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
94
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
95
+
96
+ new_pos_embed = new_pos_embed.squeeze(0)
97
+
98
+ self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(
99
+ new_num, 1024)
100
+ self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(
101
+ new_pos_embed.to(pos_embed_checkpoint.dtype))
102
+ self.vision_tower.vision_model.embeddings.position_ids = torch.arange(
103
+ new_num).expand((1, -1))
104
+
105
+ self.is_resize_pos = True
106
+
107
+ def feature_select(self, image_forward_outs):
108
+ image_features = image_forward_outs.hidden_states[self.select_layer]
109
+ if self.select_feature == 'patch':
110
+ image_features = image_features[:, 1:]
111
+ elif self.select_feature == 'cls_patch':
112
+ image_features = image_features
113
+ else:
114
+ raise ValueError(
115
+ f'Unexpected select feature: {self.select_feature}')
116
+ return image_features
117
+
118
+ def forward(self, images):
119
+ if not self.is_loaded:
120
+ self.load_model()
121
+ if type(images) is list:
122
+ image_features = []
123
+ for image in images:
124
+ image_forward_out = self.vision_tower(
125
+ image.to(device=self.device,
126
+ dtype=self.dtype).unsqueeze(0),
127
+ output_hidden_states=True)
128
+ image_feature = self.feature_select(image_forward_out).to(
129
+ image.dtype)
130
+ image_features.append(image_feature)
131
+ else:
132
+ image_forward_outs = self.vision_tower(
133
+ images.to(device=self.device, dtype=self.dtype),
134
+ output_hidden_states=True)
135
+ image_features = self.feature_select(image_forward_outs).to(
136
+ images.dtype)
137
+
138
+ return image_features
139
+
140
+ @property
141
+ def dummy_feature(self):
142
+ return torch.zeros(
143
+ 1, self.hidden_size, device=self.device, dtype=self.dtype)
144
+
145
+ @property
146
+ def dtype(self):
147
+ return self.vision_tower.dtype
148
+
149
+ @property
150
+ def device(self):
151
+ return self.vision_tower.device
152
+
153
+ @property
154
+ def config(self):
155
+ if self.is_loaded:
156
+ return self.vision_tower.config
157
+ else:
158
+ return self.cfg_only
159
+
160
+ @property
161
+ def hidden_size(self):
162
+ return self.config.hidden_size
163
+
164
+ @property
165
+ def num_patches(self):
166
+ return (self.config.image_size // self.config.patch_size)**2
167
+
168
+
169
+ class PLoRA(nn.Linear):
170
+
171
+ def __init__(self,
172
+ in_features: int,
173
+ out_features: int,
174
+ bias: bool = True,
175
+ device=None,
176
+ dtype=None,
177
+ lora_r=8,
178
+ lora_alpha=16,
179
+ lora_dropout=0.05,
180
+ lora_len=0,
181
+ **kwargs) -> None:
182
+ super().__init__(in_features, out_features, bias, device, dtype)
183
+ self.lora_r = lora_r
184
+ self.lora_alpha = lora_alpha
185
+ self.lora_len = lora_len
186
+ if lora_dropout > 0.:
187
+ self.lora_dropout = nn.Dropout(p=lora_dropout)
188
+ else:
189
+ self.lora_dropout = lambda x: x
190
+ self.lora_scaling = self.lora_alpha / self.lora_r
191
+
192
+ self.Plora_A = nn.Linear(
193
+ in_features, self.lora_r, bias=False, device=device, dtype=dtype)
194
+ self.Plora_B = nn.Linear(
195
+ self.lora_r, out_features, bias=False, device=device, dtype=dtype)
196
+
197
+ self.reset_parameters()
198
+
199
+ def reset_parameters(self):
200
+ if hasattr(self, 'lora_A'):
201
+ # initialize A the same way as the default for nn.Linear and B to zero
202
+ nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
203
+ nn.init.zeros_(self.lora_B.weight)
204
+
205
+ def forward(self, x, im_mask=None):
206
+ res = super().forward(x)
207
+ if im_mask is not None:
208
+ if torch.sum(im_mask) > 0:
209
+ part_x = x[im_mask]
210
+ res[im_mask] += self.Plora_B(
211
+ self.Plora_A(
212
+ self.lora_dropout(part_x))) * self.lora_scaling
213
+ else:
214
+ part_x = x[:, :1]
215
+ res[:, :1] += self.Plora_B(
216
+ self.Plora_A(self.lora_dropout(part_x))) * 0
217
+ return res
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternLMXComposer2ForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
7
+ "AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
8
+ "AutoModelForCausalLM": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM"
9
+ },
10
+ "bias": false,
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 2048,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 8192,
17
+ "max_length": 4096,
18
+ "max_position_embeddings": 32768,
19
+ "model_type": "internlmxcomposer2",
20
+ "num_attention_heads": 16,
21
+ "num_hidden_layers": 24,
22
+ "num_key_value_heads": 8,
23
+ "pad_token_id": 2,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": {
26
+ "factor": 2.0,
27
+ "type": "dynamic"
28
+ },
29
+ "rope_theta": 1000000,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.33.1",
33
+ "use_cache": false,
34
+ "vocab_size": 92544,
35
+ "img_size": 490
36
+ }
configuration_internlm_xcomposer2.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) InternLM. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ InternLM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class InternLMXcomposer2Config(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
33
+ an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`InternLMModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the decoder.
62
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
63
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
64
+ just in case (e.g., 512 or 1024 or 2048).
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
73
+ Whether to tie weight embeddings
74
+ Example:
75
+
76
+ ```python
77
+ >>> from transformers import InternLMModel, InternLMConfig
78
+
79
+ >>> # Initializing a InternLM internlm-7b style configuration
80
+ >>> configuration = InternLMConfig()
81
+
82
+ >>> # Initializing a model from the internlm-7b style configuration
83
+ >>> model = InternLMModel(configuration)
84
+
85
+ >>> # Accessing the model configuration
86
+ >>> configuration = model.config
87
+ ```"""
88
+ model_type = "internlm"
89
+ _auto_class = "AutoConfig"
90
+
91
+ def __init__( # pylint: disable=W0102
92
+ self,
93
+ vocab_size=103168,
94
+ hidden_size=4096,
95
+ intermediate_size=11008,
96
+ num_hidden_layers=32,
97
+ num_attention_heads=32,
98
+ num_key_value_heads=None,
99
+ hidden_act="silu",
100
+ max_position_embeddings=2048,
101
+ initializer_range=0.02,
102
+ rms_norm_eps=1e-6,
103
+ use_cache=True,
104
+ pad_token_id=0,
105
+ bos_token_id=1,
106
+ eos_token_id=2,
107
+ tie_word_embeddings=False,
108
+ bias=True,
109
+ rope_theta=10000,
110
+ rope_scaling=None,
111
+ **kwargs,
112
+ ):
113
+ self.vocab_size = vocab_size
114
+ self.max_position_embeddings = max_position_embeddings
115
+ self.hidden_size = hidden_size
116
+ self.intermediate_size = intermediate_size
117
+ self.num_hidden_layers = num_hidden_layers
118
+ self.num_attention_heads = num_attention_heads
119
+ self.bias = bias
120
+
121
+ if num_key_value_heads is None:
122
+ num_key_value_heads = num_attention_heads
123
+ self.num_key_value_heads = num_key_value_heads
124
+
125
+ self.hidden_act = hidden_act
126
+ self.initializer_range = initializer_range
127
+ self.rms_norm_eps = rms_norm_eps
128
+ self.use_cache = use_cache
129
+ self.rope_theta = rope_theta
130
+ self.rope_scaling = rope_scaling
131
+ self._rope_scaling_validation()
132
+ super().__init__(
133
+ pad_token_id=pad_token_id,
134
+ bos_token_id=bos_token_id,
135
+ eos_token_id=eos_token_id,
136
+ tie_word_embeddings=tie_word_embeddings,
137
+ **kwargs,
138
+ )
139
+
140
+ def _rope_scaling_validation(self):
141
+ """
142
+ Validate the `rope_scaling` configuration.
143
+ """
144
+ if self.rope_scaling is None:
145
+ return
146
+
147
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
148
+ raise ValueError(
149
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
150
+ f"got {self.rope_scaling}"
151
+ )
152
+ rope_scaling_type = self.rope_scaling.get("type", None)
153
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
154
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
155
+ raise ValueError(
156
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
157
+ )
158
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
159
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 1600,
6
+ "pad_token_id": 2,
7
+ "transformers_version": "4.33.1",
8
+ "use_cache": false
9
+ }
image1.webp ADDED
logo.png ADDED
logo_en.png ADDED
modeling_internlm2.py ADDED
@@ -0,0 +1,965 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # Copyright (c) InternLM. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch InternLM2 model."""
20
+ import math
21
+ import warnings
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from transformers.activations import ACT2FN
29
+ from transformers.modeling_outputs import BaseModelOutputWithPast
30
+ from transformers.modeling_utils import PreTrainedModel
31
+ from transformers.utils import (add_start_docstrings,
32
+ add_start_docstrings_to_model_forward, logging)
33
+
34
+ try:
35
+ from transformers.generation.streamers import BaseStreamer
36
+ except: # noqa # pylint: disable=bare-except
37
+ BaseStreamer = None
38
+
39
+ from .build_mlp import PLoRA
40
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config as InternLM2Config
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CONFIG_FOR_DOC = 'InternLM2Config'
44
+
45
+
46
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
47
+ def _make_causal_mask(input_ids_shape: torch.Size,
48
+ dtype: torch.dtype,
49
+ device: torch.device,
50
+ past_key_values_length: int = 0):
51
+ """Make causal mask used for bi-directional self-attention."""
52
+ bsz, tgt_len = input_ids_shape
53
+ mask = torch.full((tgt_len, tgt_len),
54
+ torch.tensor(torch.finfo(dtype).min, device=device),
55
+ device=device)
56
+ mask_cond = torch.arange(mask.size(-1), device=device)
57
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
58
+ mask = mask.to(dtype)
59
+
60
+ if past_key_values_length > 0:
61
+ mask = torch.cat([
62
+ torch.zeros(
63
+ tgt_len, past_key_values_length, dtype=dtype, device=device),
64
+ mask
65
+ ],
66
+ dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len,
68
+ tgt_len + past_key_values_length)
69
+
70
+
71
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
72
+ def _expand_mask(mask: torch.Tensor,
73
+ dtype: torch.dtype,
74
+ tgt_len: Optional[int] = None):
75
+ """Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len,
76
+ src_seq_len]`."""
77
+ bsz, src_len = mask.size()
78
+ tgt_len = tgt_len if tgt_len is not None else src_len
79
+
80
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
81
+ src_len).to(dtype)
82
+
83
+ inverted_mask = 1.0 - expanded_mask
84
+
85
+ return inverted_mask.masked_fill(
86
+ inverted_mask.to(torch.bool),
87
+ torch.finfo(dtype).min)
88
+
89
+
90
+ class InternLM2RMSNorm(nn.Module):
91
+
92
+ def __init__(self, hidden_size, eps=1e-6):
93
+ """InternLM2RMSNorm is equivalent to T5LayerNorm."""
94
+ super().__init__()
95
+ self.weight = nn.Parameter(torch.ones(hidden_size))
96
+ self.variance_epsilon = eps
97
+
98
+ def forward(self, hidden_states):
99
+ input_dtype = hidden_states.dtype
100
+ hidden_states = hidden_states.to(torch.float32)
101
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
102
+ hidden_states = hidden_states * torch.rsqrt(variance +
103
+ self.variance_epsilon)
104
+ return self.weight * hidden_states.to(input_dtype)
105
+
106
+
107
+ class InternLM2RotaryEmbedding(nn.Module):
108
+
109
+ def __init__(self,
110
+ dim,
111
+ max_position_embeddings=2048,
112
+ base=10000,
113
+ device=None):
114
+ super().__init__()
115
+
116
+ self.dim = dim
117
+ self.max_position_embeddings = max_position_embeddings
118
+ self.base = base
119
+ inv_freq = 1.0 / (
120
+ self.base
121
+ **(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
122
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
123
+
124
+ # Build here to make `torch.jit.trace` work.
125
+ self._set_cos_sin_cache(
126
+ seq_len=max_position_embeddings,
127
+ device=self.inv_freq.device,
128
+ dtype=torch.get_default_dtype())
129
+
130
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
131
+ self.max_seq_len_cached = seq_len
132
+ t = torch.arange(
133
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
134
+
135
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
136
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
137
+ emb = torch.cat((freqs, freqs), dim=-1)
138
+ self.register_buffer(
139
+ 'cos_cached', emb.cos().to(dtype), persistent=False)
140
+ self.register_buffer(
141
+ 'sin_cached', emb.sin().to(dtype), persistent=False)
142
+
143
+ def forward(self, x, seq_len=None):
144
+ # x: [bs, num_attention_heads, seq_len, head_size]
145
+ if seq_len > self.max_seq_len_cached:
146
+ self._set_cos_sin_cache(
147
+ seq_len=seq_len, device=x.device, dtype=x.dtype)
148
+
149
+ return (
150
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
151
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
152
+ )
153
+
154
+
155
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
156
+ """InternLM2RotaryEmbedding extended with linear scaling.
157
+
158
+ Credits to the Reddit user /u/kaiokendev
159
+ """
160
+
161
+ def __init__(self,
162
+ dim,
163
+ max_position_embeddings=2048,
164
+ base=10000,
165
+ device=None,
166
+ scaling_factor=1.0):
167
+ self.scaling_factor = scaling_factor
168
+ super().__init__(dim, max_position_embeddings, base, device)
169
+
170
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
171
+ self.max_seq_len_cached = seq_len
172
+ t = torch.arange(
173
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
174
+ t = t / self.scaling_factor
175
+
176
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
177
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
178
+ emb = torch.cat((freqs, freqs), dim=-1)
179
+ self.register_buffer(
180
+ 'cos_cached', emb.cos().to(dtype), persistent=False)
181
+ self.register_buffer(
182
+ 'sin_cached', emb.sin().to(dtype), persistent=False)
183
+
184
+
185
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
186
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
187
+
188
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
189
+ """
190
+
191
+ def __init__(self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0):
197
+ self.scaling_factor = scaling_factor
198
+ super().__init__(dim, max_position_embeddings, base, device)
199
+
200
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
201
+ self.max_seq_len_cached = seq_len
202
+
203
+ if seq_len > self.max_position_embeddings:
204
+ base = self.base * ((self.scaling_factor * seq_len /
205
+ self.max_position_embeddings) -
206
+ (self.scaling_factor - 1))**(
207
+ self.dim / (self.dim - 2))
208
+ inv_freq = 1.0 / (
209
+ base
210
+ **(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
211
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
212
+
213
+ t = torch.arange(
214
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
215
+
216
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
217
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
218
+ emb = torch.cat((freqs, freqs), dim=-1)
219
+ self.register_buffer(
220
+ 'cos_cached', emb.cos().to(dtype), persistent=False)
221
+ self.register_buffer(
222
+ 'sin_cached', emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ def rotate_half(x):
226
+ """Rotates half the hidden dims of the input."""
227
+ x1 = x[..., :x.shape[-1] // 2]
228
+ x2 = x[..., x.shape[-1] // 2:]
229
+ return torch.cat((-x2, x1), dim=-1)
230
+
231
+
232
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
233
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
234
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
235
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
236
+ cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
237
+ sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
238
+ if q.size(2) == 1:
239
+ q_embed = (q * cos[:, :, -1:, :]) + (
240
+ rotate_half(q) * sin[:, :, -1:, :])
241
+ else:
242
+ q_embed = (q * cos) + (rotate_half(q) * sin)
243
+
244
+ if k.size(2) == 1:
245
+ k_embed = (k * cos[:, :, -1:, :]) + (
246
+ rotate_half(k) * sin[:, :, -1:, :])
247
+ else:
248
+ k_embed = (k * cos) + (rotate_half(k) * sin)
249
+
250
+ return q_embed, k_embed
251
+
252
+
253
+ class InternLM2MLP(nn.Module):
254
+
255
+ def __init__(self, config):
256
+ super().__init__()
257
+ self.config = config
258
+ self.hidden_size = config.hidden_size
259
+ self.intermediate_size = config.intermediate_size
260
+
261
+ self.w1 = PLoRA(
262
+ self.hidden_size,
263
+ self.intermediate_size,
264
+ bias=False,
265
+ lora_r=256,
266
+ lora_alpha=256,
267
+ lora_len=576)
268
+ self.w3 = PLoRA(
269
+ self.hidden_size,
270
+ self.intermediate_size,
271
+ bias=False,
272
+ lora_r=256,
273
+ lora_alpha=256,
274
+ lora_len=576)
275
+ self.w2 = PLoRA(
276
+ self.intermediate_size,
277
+ self.hidden_size,
278
+ bias=False,
279
+ lora_r=256,
280
+ lora_alpha=256,
281
+ lora_len=576)
282
+
283
+ self.act_fn = ACT2FN[config.hidden_act]
284
+
285
+ def forward(self, x, im_mask):
286
+ down_proj = self.w2(
287
+ self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
288
+
289
+ return down_proj
290
+
291
+
292
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
293
+ """This is the equivalent of torch.repeat_interleave(x, dim=1,
294
+ repeats=n_rep).
295
+
296
+ The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
297
+ (batch, num_attention_heads, seqlen, head_dim)
298
+ """
299
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
300
+ if n_rep == 1:
301
+ return hidden_states
302
+ hidden_states = hidden_states[:, :,
303
+ None, :, :].expand(batch,
304
+ num_key_value_heads,
305
+ n_rep, slen, head_dim)
306
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
307
+ head_dim)
308
+
309
+
310
+ class InternLM2Attention(nn.Module):
311
+ """Multi-headed attention from 'Attention Is All You Need' paper."""
312
+
313
+ def __init__(self, config: InternLM2Config):
314
+ super().__init__()
315
+ self.config = config
316
+ self.hidden_size = config.hidden_size
317
+ self.num_heads = config.num_attention_heads
318
+ self.head_dim = self.hidden_size // self.num_heads
319
+ self.num_key_value_heads = config.num_key_value_heads
320
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
321
+ self.max_position_embeddings = config.max_position_embeddings
322
+ self.is_causal = True
323
+
324
+ if (self.head_dim * self.num_heads) != self.hidden_size:
325
+ raise ValueError(
326
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
327
+ f' and `num_heads`: {self.num_heads}).')
328
+
329
+ self.wqkv = PLoRA(
330
+ self.hidden_size,
331
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
332
+ bias=config.bias,
333
+ lora_r=256,
334
+ lora_alpha=256,
335
+ lora_len=576)
336
+
337
+ self.wo = PLoRA(
338
+ self.num_heads * self.head_dim,
339
+ self.hidden_size,
340
+ bias=config.bias,
341
+ lora_r=256,
342
+ lora_alpha=256,
343
+ lora_len=576)
344
+ self._init_rope()
345
+
346
+ def _init_rope(self):
347
+ if self.config.rope_scaling is None:
348
+ self.rotary_emb = InternLM2RotaryEmbedding(
349
+ self.head_dim,
350
+ max_position_embeddings=self.max_position_embeddings,
351
+ base=self.config.rope_theta,
352
+ )
353
+ else:
354
+ scaling_type = self.config.rope_scaling['type']
355
+ scaling_factor = self.config.rope_scaling['factor']
356
+ if scaling_type == 'dynamic':
357
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
358
+ self.head_dim,
359
+ max_position_embeddings=self.max_position_embeddings,
360
+ base=self.config.rope_theta,
361
+ scaling_factor=scaling_factor)
362
+ else:
363
+ raise ValueError(
364
+ "Currently we only support rotary embedding's type being 'dynamic'."
365
+ )
366
+ return self.rotary_emb
367
+
368
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
369
+ return tensor.view(bsz, seq_len, self.num_heads,
370
+ self.head_dim).transpose(1, 2).contiguous()
371
+
372
+ def forward(
373
+ self,
374
+ hidden_states: torch.Tensor,
375
+ attention_mask: Optional[torch.Tensor] = None,
376
+ position_ids: Optional[torch.LongTensor] = None,
377
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
378
+ output_attentions: bool = False,
379
+ use_cache: bool = False,
380
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
381
+ **kwargs,
382
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
383
+ Optional[Tuple[torch.Tensor]]]:
384
+ if 'padding_mask' in kwargs:
385
+ warnings.warn(
386
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
387
+ 'Please make sure use `attention_mask` instead.`')
388
+
389
+ bsz, q_len, _ = hidden_states.size()
390
+
391
+ qkv_states = self.wqkv(hidden_states, im_mask)
392
+
393
+ qkv_states = rearrange(
394
+ qkv_states,
395
+ 'b q (h gs d) -> b q h gs d',
396
+ gs=2 + self.num_key_value_groups,
397
+ d=self.head_dim,
398
+ )
399
+
400
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
401
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
402
+ key_states = qkv_states[..., -2, :]
403
+ value_states = qkv_states[..., -1, :]
404
+
405
+ query_states = query_states.transpose(1, 2)
406
+ key_states = key_states.transpose(1, 2)
407
+ value_states = value_states.transpose(1, 2)
408
+
409
+ kv_seq_len = key_states.shape[-2]
410
+ if past_key_value is not None:
411
+ kv_seq_len += past_key_value[0].shape[-2]
412
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
413
+ query_states, key_states = apply_rotary_pos_emb(
414
+ query_states, key_states, cos, sin, position_ids)
415
+
416
+ if past_key_value is not None:
417
+ # reuse k, v, self_attention
418
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
419
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
420
+
421
+ past_key_value = (key_states, value_states) if use_cache else None
422
+
423
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
424
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
425
+
426
+ attn_weights = torch.matmul(query_states, key_states.transpose(
427
+ 2, 3)) / math.sqrt(self.head_dim)
428
+
429
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
430
+ raise ValueError(
431
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
432
+ f' {attn_weights.size()}')
433
+
434
+ if attention_mask is not None:
435
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
436
+ raise ValueError(
437
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
438
+ )
439
+ attn_weights = attn_weights + attention_mask
440
+
441
+ # upcast attention to fp32
442
+ attn_weights = nn.functional.softmax(
443
+ attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
444
+ attn_output = torch.matmul(attn_weights, value_states)
445
+
446
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
447
+ raise ValueError(
448
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
449
+ f' {attn_output.size()}')
450
+
451
+ attn_output = attn_output.transpose(1, 2).contiguous()
452
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
453
+
454
+ attn_output = self.wo(attn_output, im_mask)
455
+
456
+ if not output_attentions:
457
+ attn_weights = None
458
+
459
+ return attn_output, attn_weights, past_key_value
460
+
461
+
462
+ class InternLM2FlashAttention2(InternLM2Attention):
463
+ """InternLM2 flash attention module.
464
+
465
+ This module inherits from `InternLM2Attention` as the weights of the module
466
+ stays untouched. The only required change would be on the forward pass
467
+ where it needs to correctly call the public API of flash attention and deal
468
+ with padding tokens in case the input contains any of them.
469
+ """
470
+
471
+ def forward(
472
+ self,
473
+ hidden_states: torch.Tensor,
474
+ attention_mask: Optional[torch.LongTensor] = None,
475
+ position_ids: Optional[torch.LongTensor] = None,
476
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
477
+ output_attentions: bool = False,
478
+ use_cache: bool = False,
479
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
480
+ **kwargs,
481
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
482
+ Optional[Tuple[torch.Tensor]]]:
483
+ # InternLM2FlashAttention2 attention does not support output_attentions
484
+ if 'padding_mask' in kwargs:
485
+ warnings.warn(
486
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
487
+ 'Please make sure use `attention_mask` instead.`')
488
+
489
+ # overwrite attention_mask with padding_mask
490
+ attention_mask = kwargs.pop('padding_mask')
491
+
492
+ output_attentions = False
493
+
494
+ bsz, q_len, _ = hidden_states.size()
495
+
496
+ qkv_states = self.wqkv(hidden_states, im_mask)
497
+
498
+ qkv_states = rearrange(
499
+ qkv_states,
500
+ 'b q (h gs d) -> b q h gs d',
501
+ gs=self.num_heads + 2 * self.num_key_value_heads,
502
+ d=self.head_dim,
503
+ q=q_len,
504
+ )
505
+
506
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
507
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
508
+ key_states = qkv_states[..., -2, :]
509
+ value_states = qkv_states[..., -1, :]
510
+
511
+ kv_seq_len = key_states.shape[-2]
512
+ if past_key_value is not None:
513
+ kv_seq_len += past_key_value[0].shape[-2]
514
+
515
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
516
+
517
+ query_states, key_states = apply_rotary_pos_emb(
518
+ query_states, key_states, cos, sin, position_ids)
519
+
520
+ if past_key_value is not None:
521
+ # reuse k, v, self_attention
522
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
523
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
524
+
525
+ past_key_value = (key_states, value_states) if use_cache else None
526
+
527
+ query_states = query_states.transpose(1, 2)
528
+ key_states = key_states.transpose(1, 2)
529
+ value_states = value_states.transpose(1, 2)
530
+
531
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
532
+
533
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
534
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
535
+ # cast them back in the correct dtype just to be sure everything works as expected.
536
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
537
+ # in fp32. (InternLM2RMSNorm handles it correctly)
538
+
539
+ input_dtype = query_states.dtype
540
+ if input_dtype == torch.float32:
541
+ # Handle the case where the model is quantized
542
+ if hasattr(self.config, '_pre_quantization_dtype'):
543
+ target_dtype = self.config._pre_quantization_dtype
544
+ else:
545
+ target_dtype = self.q_proj.weight.dtype
546
+
547
+ logger.warning_once(
548
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
549
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back '
550
+ f'the input in {target_dtype}.')
551
+
552
+ query_states = query_states.to(target_dtype)
553
+ key_states = key_states.to(target_dtype)
554
+ value_states = value_states.to(target_dtype)
555
+
556
+ attn_output = self._flash_attention_forward(
557
+ query_states,
558
+ key_states,
559
+ value_states,
560
+ attention_mask,
561
+ q_len,
562
+ dropout=dropout_rate)
563
+
564
+ attn_output = attn_output.reshape(bsz, q_len,
565
+ self.hidden_size).contiguous()
566
+ attn_output = self.wo(attn_output, im_mask)
567
+
568
+ if not output_attentions:
569
+ attn_weights = None
570
+
571
+ return attn_output, attn_weights, past_key_value
572
+
573
+
574
+ class InternLM2DecoderLayer(nn.Module):
575
+
576
+ def __init__(self, config: InternLM2Config):
577
+ super().__init__()
578
+ self.hidden_size = config.hidden_size
579
+ self.attention = (
580
+ InternLM2Attention(config=config)
581
+ if not getattr(config, '_flash_attn_2_enabled', False) else
582
+ InternLM2FlashAttention2(config=config))
583
+ self.feed_forward = InternLM2MLP(config)
584
+ self.attention_norm = InternLM2RMSNorm(
585
+ config.hidden_size, eps=config.rms_norm_eps)
586
+ self.ffn_norm = InternLM2RMSNorm(
587
+ config.hidden_size, eps=config.rms_norm_eps)
588
+
589
+ def forward(
590
+ self,
591
+ hidden_states: torch.Tensor,
592
+ attention_mask: Optional[torch.Tensor] = None,
593
+ position_ids: Optional[torch.LongTensor] = None,
594
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
595
+ output_attentions: Optional[bool] = False,
596
+ use_cache: Optional[bool] = False,
597
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
598
+ **kwargs,
599
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
600
+ torch.FloatTensor]]]:
601
+ """
602
+ Args:
603
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
604
+ attention_mask (`torch.FloatTensor`, *optional*):
605
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
606
+ query_sequence_length, key_sequence_length)` if default attention is used.
607
+ output_attentions (`bool`, *optional*):
608
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
609
+ returned tensors for more detail.
610
+ use_cache (`bool`, *optional*):
611
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
612
+ (see `past_key_values`).
613
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
614
+ """
615
+ if 'padding_mask' in kwargs:
616
+ warnings.warn(
617
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
618
+ 'Please make sure use `attention_mask` instead.`')
619
+
620
+ residual = hidden_states
621
+
622
+ hidden_states = self.attention_norm(hidden_states)
623
+
624
+ # Self Attention
625
+ hidden_states, self_attn_weights, present_key_value = self.attention(
626
+ hidden_states=hidden_states,
627
+ attention_mask=attention_mask,
628
+ position_ids=position_ids,
629
+ past_key_value=past_key_value,
630
+ output_attentions=output_attentions,
631
+ use_cache=use_cache,
632
+ im_mask=im_mask,
633
+ **kwargs,
634
+ )
635
+ hidden_states = residual + hidden_states
636
+
637
+ # Fully Connected
638
+ residual = hidden_states
639
+ hidden_states = self.ffn_norm(hidden_states)
640
+ hidden_states = self.feed_forward(hidden_states, im_mask)
641
+ hidden_states = residual + hidden_states
642
+
643
+ outputs = (hidden_states, )
644
+
645
+ if output_attentions:
646
+ outputs += (self_attn_weights, )
647
+
648
+ if use_cache:
649
+ outputs += (present_key_value, )
650
+
651
+ return outputs
652
+
653
+
654
+ InternLM2_START_DOCSTRING = r"""
655
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
656
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
657
+ etc.)
658
+
659
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
660
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
661
+ and behavior.
662
+
663
+ Parameters:
664
+ config ([`InternLM2Config`]):
665
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
666
+ load the weights associated with the model, only the configuration. Check out the
667
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
668
+ """
669
+
670
+
671
+ @add_start_docstrings(
672
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
673
+ InternLM2_START_DOCSTRING,
674
+ )
675
+ class InternLM2PreTrainedModel(PreTrainedModel):
676
+ config_class = InternLM2Config
677
+ base_model_prefix = 'model'
678
+ supports_gradient_checkpointing = True
679
+ _no_split_modules = ['InternLM2DecoderLayer']
680
+ _skip_keys_device_placement = 'past_key_values'
681
+ _supports_flash_attn_2 = True
682
+
683
+ def _init_weights(self, module):
684
+ std = self.config.initializer_range
685
+ if isinstance(module, nn.Linear):
686
+ module.weight.data.normal_(mean=0.0, std=std)
687
+ if module.bias is not None:
688
+ module.bias.data.zero_()
689
+ elif isinstance(module, nn.Embedding):
690
+ module.weight.data.normal_(mean=0.0, std=std)
691
+ if module.padding_idx is not None:
692
+ module.weight.data[module.padding_idx].zero_()
693
+
694
+
695
+ InternLM2_INPUTS_DOCSTRING = r"""
696
+ Args:
697
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
698
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
699
+ it.
700
+
701
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
702
+ [`PreTrainedTokenizer.__call__`] for details.
703
+
704
+ [What are input IDs?](../glossary#input-ids)
705
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
706
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
707
+
708
+ - 1 for tokens that are **not masked**,
709
+ - 0 for tokens that are **masked**.
710
+
711
+ [What are attention masks?](../glossary#attention-mask)
712
+
713
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
714
+ [`PreTrainedTokenizer.__call__`] for details.
715
+
716
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
717
+ `past_key_values`).
718
+
719
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
720
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
721
+ information on the default strategy.
722
+
723
+ - 1 indicates the head is **not masked**,
724
+ - 0 indicates the head is **masked**.
725
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
726
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
727
+ config.n_positions - 1]`.
728
+
729
+ [What are position IDs?](../glossary#position-ids)
730
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
731
+ when `config.use_cache=True`):
732
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
733
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
734
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
735
+
736
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
737
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
738
+
739
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
740
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
741
+ of shape `(batch_size, sequence_length)`.
742
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
743
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
744
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
745
+ model's internal embedding lookup matrix.
746
+ use_cache (`bool`, *optional*):
747
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
748
+ `past_key_values`).
749
+ output_attentions (`bool`, *optional*):
750
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
751
+ tensors for more detail.
752
+ output_hidden_states (`bool`, *optional*):
753
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
754
+ more detail.
755
+ return_dict (`bool`, *optional*):
756
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
757
+ """
758
+
759
+
760
+ @add_start_docstrings(
761
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
762
+ InternLM2_START_DOCSTRING,
763
+ )
764
+ class InternLM2Model(InternLM2PreTrainedModel):
765
+ """Transformer decoder consisting of *config.num_hidden_layers* layers.
766
+ Each layer is a [`InternLM2DecoderLayer`]
767
+
768
+ Args:
769
+ config: InternLM2Config
770
+ """
771
+
772
+ _auto_class = 'AutoModel'
773
+
774
+ def __init__(self, config: InternLM2Config):
775
+ super().__init__(config)
776
+ self.padding_idx = config.pad_token_id
777
+ self.vocab_size = config.vocab_size
778
+
779
+ self.tok_embeddings = nn.Embedding(config.vocab_size,
780
+ config.hidden_size,
781
+ self.padding_idx)
782
+ self.layers = nn.ModuleList([
783
+ InternLM2DecoderLayer(config)
784
+ for _ in range(config.num_hidden_layers)
785
+ ])
786
+ self.norm = InternLM2RMSNorm(
787
+ config.hidden_size, eps=config.rms_norm_eps)
788
+
789
+ self.gradient_checkpointing = False
790
+ # Initialize weights and apply final processing
791
+ self.post_init()
792
+
793
+ def get_input_embeddings(self):
794
+ return self.tok_embeddings
795
+
796
+ def set_input_embeddings(self, value):
797
+ self.tok_embeddings = value
798
+
799
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
800
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
801
+ inputs_embeds, past_key_values_length):
802
+ # create causal mask
803
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
804
+ combined_attention_mask = None
805
+ if input_shape[-1] > 1:
806
+ combined_attention_mask = _make_causal_mask(
807
+ input_shape,
808
+ inputs_embeds.dtype,
809
+ device=inputs_embeds.device,
810
+ past_key_values_length=past_key_values_length,
811
+ )
812
+
813
+ if attention_mask is not None:
814
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
815
+ expanded_attn_mask = _expand_mask(
816
+ attention_mask, inputs_embeds.dtype,
817
+ tgt_len=input_shape[-1]).to(inputs_embeds.device)
818
+ combined_attention_mask = (
819
+ expanded_attn_mask if combined_attention_mask is None else
820
+ expanded_attn_mask + combined_attention_mask)
821
+
822
+ return combined_attention_mask
823
+
824
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
825
+ def forward(self,
826
+ input_ids: torch.LongTensor = None,
827
+ attention_mask: Optional[torch.Tensor] = None,
828
+ position_ids: Optional[torch.LongTensor] = None,
829
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
830
+ inputs_embeds: Optional[torch.FloatTensor] = None,
831
+ use_cache: Optional[bool] = None,
832
+ output_attentions: Optional[bool] = None,
833
+ output_hidden_states: Optional[bool] = None,
834
+ return_dict: Optional[bool] = None,
835
+ **kwargs) -> Union[Tuple, BaseModelOutputWithPast]:
836
+
837
+ im_mask = kwargs.get('im_mask', None)
838
+
839
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
840
+ output_hidden_states = (
841
+ output_hidden_states if output_hidden_states is not None else
842
+ self.config.output_hidden_states)
843
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
844
+
845
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
846
+
847
+ # retrieve input_ids and inputs_embeds
848
+ if input_ids is not None and inputs_embeds is not None:
849
+ raise ValueError(
850
+ 'You cannot specify both input_ids and inputs_embeds at the same time'
851
+ )
852
+ elif input_ids is not None:
853
+ batch_size, seq_length = input_ids.shape[:2]
854
+ elif inputs_embeds is not None:
855
+ batch_size, seq_length = inputs_embeds.shape[:2]
856
+ else:
857
+ raise ValueError(
858
+ 'You have to specify either input_ids or inputs_embeds')
859
+
860
+ seq_length_with_past = seq_length
861
+ past_key_values_length = 0
862
+ if past_key_values is not None:
863
+ past_key_values_length = past_key_values[0][0].shape[2]
864
+ seq_length_with_past = seq_length_with_past + past_key_values_length
865
+
866
+ if position_ids is None:
867
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
868
+ position_ids = torch.arange(
869
+ past_key_values_length,
870
+ seq_length + past_key_values_length,
871
+ dtype=torch.long,
872
+ device=device)
873
+ position_ids = position_ids.unsqueeze(0)
874
+
875
+ if inputs_embeds is None:
876
+ inputs_embeds = self.tok_embeddings(input_ids)
877
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
878
+ inputs_embeds.device).bool()
879
+ # embed positions
880
+ if attention_mask is None:
881
+ attention_mask = torch.ones((batch_size, seq_length_with_past),
882
+ dtype=torch.bool,
883
+ device=inputs_embeds.device)
884
+ attention_mask = self._prepare_decoder_attention_mask(
885
+ attention_mask, (batch_size, seq_length), inputs_embeds,
886
+ past_key_values_length)
887
+
888
+ # embed positions
889
+ hidden_states = inputs_embeds
890
+
891
+ if self.gradient_checkpointing and self.training:
892
+ if use_cache:
893
+ logger.warning_once(
894
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
895
+ )
896
+ use_cache = False
897
+
898
+ # decoder layers
899
+ all_hidden_states = () if output_hidden_states else None
900
+ all_self_attns = () if output_attentions else None
901
+ next_decoder_cache = () if use_cache else None
902
+
903
+ for idx, decoder_layer in enumerate(self.layers):
904
+ if output_hidden_states:
905
+ all_hidden_states += (hidden_states, )
906
+
907
+ past_key_value = past_key_values[
908
+ idx] if past_key_values is not None else None
909
+
910
+ if self.gradient_checkpointing and self.training:
911
+
912
+ def create_custom_forward(module):
913
+
914
+ def custom_forward(*inputs):
915
+ # None for past_key_value
916
+ return module(*inputs, output_attentions, None,
917
+ im_mask)
918
+
919
+ return custom_forward
920
+
921
+ layer_outputs = torch.utils.checkpoint.checkpoint(
922
+ create_custom_forward(decoder_layer),
923
+ hidden_states,
924
+ attention_mask,
925
+ position_ids,
926
+ None,
927
+ )
928
+ else:
929
+ layer_outputs = decoder_layer(
930
+ hidden_states,
931
+ attention_mask=attention_mask,
932
+ position_ids=position_ids,
933
+ past_key_value=past_key_value,
934
+ output_attentions=output_attentions,
935
+ use_cache=use_cache,
936
+ im_mask=im_mask,
937
+ )
938
+
939
+ hidden_states = layer_outputs[0]
940
+
941
+ if use_cache:
942
+ next_decoder_cache += (
943
+ layer_outputs[2 if output_attentions else 1], )
944
+
945
+ if output_attentions:
946
+ all_self_attns += (layer_outputs[1], )
947
+
948
+ hidden_states = self.norm(hidden_states)
949
+
950
+ # add hidden states from the last decoder layer
951
+ if output_hidden_states:
952
+ all_hidden_states += (hidden_states, )
953
+
954
+ next_cache = next_decoder_cache if use_cache else None
955
+ if not return_dict:
956
+ return tuple(
957
+ v for v in
958
+ [hidden_states, next_cache, all_hidden_states, all_self_attns]
959
+ if v is not None)
960
+ return BaseModelOutputWithPast(
961
+ last_hidden_state=hidden_states,
962
+ past_key_values=next_cache,
963
+ hidden_states=all_hidden_states,
964
+ attentions=all_self_attns,
965
+ )
modeling_internlm_xcomposer2.py ADDED
@@ -0,0 +1,612 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # Copyright (c) InternLM. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch InternLMXComposer2 model."""
20
+ import copy
21
+ import queue
22
+ import threading
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from PIL import Image
28
+ from torch import nn
29
+ from torch.nn import CrossEntropyLoss
30
+ from torchvision import transforms
31
+ from torchvision.transforms.functional import InterpolationMode
32
+ from transformers.modeling_outputs import CausalLMOutputWithPast
33
+ from transformers.utils import (add_start_docstrings_to_model_forward,
34
+ replace_return_docstrings)
35
+
36
+ try:
37
+ from transformers.generation.streamers import BaseStreamer
38
+ except: # noqa # pylint: disable=bare-except
39
+ BaseStreamer = None
40
+
41
+ from .build_mlp import build_vision_projector, build_vision_tower
42
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
43
+ from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
44
+ InternLM2PreTrainedModel)
45
+
46
+ _CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
47
+
48
+
49
+ class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
50
+ _auto_class = 'AutoModelForCausalLM'
51
+
52
+ _tied_weights_keys = ['output.weight']
53
+
54
+ def __init__(self, config):
55
+ super().__init__(config)
56
+ self.model = InternLM2Model(config)
57
+ self.vocab_size = config.vocab_size
58
+ self.output = nn.Linear(
59
+ config.hidden_size, config.vocab_size, bias=False)
60
+ self.tokenizer = None
61
+
62
+ self.max_length = config.max_length
63
+ print(f'Set max length to {self.max_length}')
64
+ # Initialize weights and apply final processing
65
+ self.post_init()
66
+
67
+ self.vit = build_vision_tower()
68
+ self.vision_proj = build_vision_projector()
69
+
70
+ self.vis_processor = transforms.Compose([
71
+ transforms.Resize((config.img_size, config.img_size),
72
+ interpolation=InterpolationMode.BICUBIC),
73
+ transforms.ToTensor(),
74
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
75
+ (0.26862954, 0.26130258, 0.27577711)),
76
+ ])
77
+
78
+ def _set_gradient_checkpointing(self, module, value=False):
79
+ if isinstance(module, InternLM2Model):
80
+ module.gradient_checkpointing = value
81
+ if value:
82
+ self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
83
+
84
+ def get_input_embeddings(self):
85
+ return self.model.tok_embeddings
86
+
87
+ def set_input_embeddings(self, value):
88
+ self.model.tok_embeddings = value
89
+
90
+ def get_output_embeddings(self):
91
+ return self.output
92
+
93
+ def set_output_embeddings(self, new_embeddings):
94
+ self.output = new_embeddings
95
+
96
+ def set_decoder(self, decoder):
97
+ self.model = decoder
98
+
99
+ def get_decoder(self):
100
+ return self.model
101
+
102
+ def encode_text(self, text, add_special_tokens=False):
103
+ token = self.tokenizer(
104
+ text, return_tensors='pt',
105
+ add_special_tokens=add_special_tokens).input_ids.to(self.device)
106
+ embs = self.model.tok_embeddings(token)
107
+ return embs
108
+
109
+ def encode_img(self, image):
110
+ if image is None:
111
+ return None
112
+ if isinstance(image, str):
113
+ image = Image.open(image).convert('RGB')
114
+ image = self.vis_processor(image).unsqueeze(0).to(self.device)
115
+ else:
116
+ assert isinstance(image, torch.Tensor)
117
+
118
+ img_embeds, atts_img, img_target = self.img2emb(image)
119
+ return img_embeds
120
+
121
+ def img2emb(self, image):
122
+ img_embeds = self.vision_proj(self.vit(image.to(self.device)))
123
+ atts_img = torch.ones(
124
+ img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
125
+
126
+ img_target = torch.ones(
127
+ img_embeds.size()[:2], dtype=torch.long).to(
128
+ img_embeds.device) * -100
129
+
130
+ return img_embeds, atts_img, img_target
131
+
132
+ def prompt_wrap(self, img_embeds, prompt):
133
+ batch_size = img_embeds.shape[0]
134
+ p_before, p_after = prompt.split('<ImageHere>')
135
+ p_before_tokens = self.tokenizer(
136
+ p_before, return_tensors='pt',
137
+ add_special_tokens=True).to(img_embeds.device)
138
+
139
+ p_before_embeds = self.model.tok_embeddings(
140
+ p_before_tokens.input_ids).expand(batch_size, -1, -1)
141
+ wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
142
+
143
+ wrapped_atts_img = torch.ones(
144
+ wrapped_img_embeds.size()[:-1],
145
+ dtype=torch.long).to(img_embeds.device)
146
+
147
+ wrapped_target = torch.ones(
148
+ batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
149
+ img_embeds.device) * -100
150
+
151
+ return wrapped_img_embeds, wrapped_atts_img, wrapped_target
152
+
153
+ def text2emb(self, text, add_special=False):
154
+ to_regress_tokens = self.tokenizer(
155
+ text,
156
+ return_tensors='pt',
157
+ padding='longest',
158
+ truncation=True,
159
+ max_length=self.max_length,
160
+ add_special_tokens=add_special).to(self.device)
161
+
162
+ targets = self.mask_human_targets(to_regress_tokens.input_ids)
163
+ targets = targets.to(self.device)
164
+ return to_regress_tokens, targets
165
+
166
+ def interleav_wrap_chat(self, tokenizer, query, image, history, meta_instruction):
167
+ prompt = ''
168
+ if meta_instruction:
169
+ prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
170
+ for record in history:
171
+ prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
172
+ prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
173
+
174
+ im_len = image.shape[1]
175
+ image_nums = len(image)
176
+ parts = prompt.split('<ImageHere>')
177
+ wrap_embeds, wrap_im_mask = [], []
178
+ temp_len = 0
179
+
180
+ if len(parts) != image_nums + 1:
181
+ raise ValueError('Invalid <ImageHere> prompt format.')
182
+
183
+ for idx, part in enumerate(parts):
184
+ if len(part) > 0:
185
+ part_tokens = tokenizer(part, return_tensors='pt').to(self.device)
186
+ part_embeds = self.model.tok_embeddings(
187
+ part_tokens.input_ids)
188
+ wrap_embeds.append(part_embeds)
189
+ wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
190
+ temp_len += part_embeds.shape[1]
191
+ if idx < image_nums:
192
+ wrap_embeds.append(image[idx].unsqueeze(0))
193
+ wrap_im_mask.append(torch.ones(1, image[idx].shape[0]))
194
+ temp_len += im_len
195
+
196
+ if temp_len > self.max_length:
197
+ break
198
+
199
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
200
+ wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
201
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
202
+ wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool()
203
+ inputs = {
204
+ 'inputs_embeds': wrap_embeds
205
+ }
206
+ return inputs, wrap_im_mask
207
+
208
+ def interleav_wrap(self, img_list, text_list):
209
+ wrap_embeds_list, wrap_atts_list = [], []
210
+ wrap_target_list, wrap_im_mask_list = [], []
211
+
212
+ for image, text in zip(img_list, text_list):
213
+ img_embeds, atts_img, img_target = self.img2emb(image)
214
+ text = text[0]
215
+ parts = text.split('<ImageHere>')
216
+ wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], []
217
+ temp_len = 0
218
+ image_nums, im_len = img_embeds.shape[:2]
219
+ need_bos = True
220
+ for idx, part in enumerate(parts):
221
+ if len(part) > 0:
222
+ part_tokens = self.tokenizer(
223
+ part,
224
+ return_tensors='pt',
225
+ padding='longest',
226
+ add_special_tokens=need_bos).to(self.device)
227
+ if need_bos:
228
+ need_bos = False
229
+ wrap_tokens.append(part_tokens.input_ids)
230
+ part_embeds = self.model.tok_embeddings(
231
+ part_tokens.input_ids)
232
+ wrap_embeds.append(part_embeds)
233
+ wrap_atts.append(part_tokens.attention_mask)
234
+ wrap_im_mask.append(
235
+ torch.zeros(part_embeds.shape[:2]).to(self.device))
236
+
237
+ temp_len += part_embeds.shape[1]
238
+ if idx < image_nums:
239
+ wrap_tokens.append(img_target[idx].unsqueeze(0))
240
+ wrap_embeds.append(img_embeds[idx].unsqueeze(0))
241
+ wrap_atts.append(atts_img[idx].unsqueeze(0))
242
+ wrap_im_mask.append(
243
+ torch.ones_like(atts_img[idx].unsqueeze(0)))
244
+
245
+ temp_len += im_len
246
+ if temp_len > self.max_length:
247
+ break
248
+
249
+ wrap_tokens = torch.cat(wrap_tokens, dim=1)
250
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
251
+ wrap_atts = torch.cat(wrap_atts, dim=1)
252
+ wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
253
+
254
+ wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
255
+
256
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
257
+ wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
258
+ wrap_target = wrap_target[:, :self.max_length].to(self.device)
259
+ wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device)
260
+
261
+ wrap_embeds_list.append(wrap_embeds)
262
+ wrap_atts_list.append(wrap_atts)
263
+ wrap_target_list.append(wrap_target)
264
+ wrap_im_mask_list.append(wrap_im_mask)
265
+
266
+ wrap_embeds = torch.cat(wrap_embeds_list)
267
+ wrap_atts = torch.cat(wrap_atts_list)
268
+ wrap_target = torch.cat(wrap_target_list)
269
+ wrap_im_mask = torch.cat(wrap_im_mask_list)
270
+ return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask
271
+
272
+ def mask_human_targets(self, input_ids, pure=False):
273
+ target_batch = []
274
+ for bs in range(input_ids.shape[0]):
275
+ ids = input_ids[bs]
276
+ targets = copy.deepcopy(ids)
277
+ end_count = 0
278
+ last_eoa = 0
279
+ for i, temp_id in enumerate(ids):
280
+ if temp_id == 92542:
281
+ if end_count % 2 == 0:
282
+ targets[last_eoa:i + 6] = -100
283
+ else:
284
+ last_eoa = i + 1
285
+ end_count += 1
286
+ # # eos and following pad
287
+ elif temp_id == 2:
288
+ # loss on eos, but not on pad
289
+ targets[i + 1:] = -100
290
+ break
291
+ # trunction, end at last question
292
+ if temp_id != 2 and end_count % 2 == 0:
293
+ # mask all after the last answer
294
+ targets[last_eoa + 1:] = -100
295
+ target_batch.append(targets.unsqueeze(0))
296
+ target_batch = torch.cat(target_batch, dim=0)
297
+ return target_batch
298
+
299
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
300
+ @replace_return_docstrings(
301
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
302
+ def forward(self,
303
+ input_ids: torch.LongTensor = None,
304
+ attention_mask: Optional[torch.Tensor] = None,
305
+ position_ids: Optional[torch.LongTensor] = None,
306
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
307
+ inputs_embeds: Optional[torch.FloatTensor] = None,
308
+ labels: Optional[torch.LongTensor] = None,
309
+ use_cache: Optional[bool] = None,
310
+ output_attentions: Optional[bool] = None,
311
+ output_hidden_states: Optional[bool] = None,
312
+ return_dict: Optional[bool] = None,
313
+ **kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
314
+ r"""
315
+ Args:
316
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
317
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
318
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
319
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
320
+ Returns:
321
+ """
322
+
323
+ samples = kwargs.get('samples', None)
324
+ if samples:
325
+ if samples['data_type'][0] == 'text':
326
+ has_img = False
327
+ elif samples['data_type'][0] == 'multi':
328
+ has_img = True
329
+ else:
330
+ raise NotImplementedError
331
+
332
+ # encode text
333
+ text = samples['text_input']
334
+ # encode image
335
+ if has_img:
336
+ image = samples['image']
337
+ to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
338
+ image, text)
339
+ else:
340
+ to_regress_tokens, targets = self.text2emb(
341
+ text, add_special=True)
342
+ to_regress_embeds = self.model.tok_embeddings(
343
+ to_regress_tokens.input_ids)
344
+ attention_mask = to_regress_tokens.attention_mask
345
+ im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
346
+
347
+ inputs_embeds = to_regress_embeds[:, :self.max_length]
348
+ attention_mask = attention_mask[:, :self.max_length]
349
+ targets = targets[:, :self.max_length]
350
+ im_mask = im_mask[:, :self.max_length].bool()
351
+ labels = targets
352
+ else:
353
+ im_mask = kwargs.get('im_mask', None)
354
+ if im_mask is None and inputs_embeds is not None:
355
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
356
+ inputs_embeds.device)
357
+ im_mask = im_mask.bool()
358
+
359
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
360
+ output_hidden_states = (
361
+ output_hidden_states if output_hidden_states is not None else
362
+ self.config.output_hidden_states)
363
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
364
+
365
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
366
+ outputs = self.model(
367
+ input_ids=input_ids,
368
+ attention_mask=attention_mask,
369
+ position_ids=position_ids,
370
+ past_key_values=past_key_values,
371
+ inputs_embeds=inputs_embeds,
372
+ use_cache=use_cache,
373
+ output_attentions=output_attentions,
374
+ output_hidden_states=output_hidden_states,
375
+ return_dict=return_dict,
376
+ im_mask=im_mask,
377
+ )
378
+
379
+ hidden_states = outputs[0]
380
+ logits = self.output(hidden_states)
381
+ logits = logits.float()
382
+
383
+ loss = None
384
+ if labels is not None:
385
+ # Shift so that tokens < n predict n
386
+ shift_logits = logits[..., :-1, :].contiguous()
387
+ shift_labels = labels[..., 1:].contiguous()
388
+ # Flatten the tokens
389
+ loss_fct = CrossEntropyLoss()
390
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
391
+ shift_labels = shift_labels.view(-1)
392
+ # Enable model parallelism
393
+ shift_labels = shift_labels.to(shift_logits.device)
394
+ loss = loss_fct(shift_logits, shift_labels)
395
+
396
+ if not return_dict:
397
+ output = (logits, ) + outputs[1:]
398
+ return (loss, ) + output if loss is not None else output
399
+
400
+ return CausalLMOutputWithPast(
401
+ loss=loss,
402
+ logits=logits,
403
+ past_key_values=outputs.past_key_values,
404
+ hidden_states=outputs.hidden_states,
405
+ attentions=outputs.attentions,
406
+ )
407
+
408
+ def prepare_inputs_for_generation(self,
409
+ input_ids,
410
+ past_key_values=None,
411
+ attention_mask=None,
412
+ inputs_embeds=None,
413
+ im_mask=None,
414
+ **kwargs):
415
+ if past_key_values is not None:
416
+ past_length = past_key_values[0][0].shape[2]
417
+
418
+ # Some generation methods already pass only the last input ID
419
+ if input_ids.shape[1] > past_length:
420
+ remove_prefix_length = past_length
421
+ else:
422
+ # Default to old behavior: keep only final ID
423
+ remove_prefix_length = input_ids.shape[1] - 1
424
+
425
+ input_ids = input_ids[:, remove_prefix_length:]
426
+
427
+ position_ids = kwargs.get('position_ids', None)
428
+ if attention_mask is not None and position_ids is None:
429
+ # create position_ids on the fly for batch generation
430
+ position_ids = attention_mask.long().cumsum(-1) - 1
431
+ position_ids.masked_fill_(attention_mask == 0, 1)
432
+ if past_key_values:
433
+ position_ids = position_ids[:, -input_ids.shape[1]:]
434
+
435
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
436
+ if inputs_embeds is not None and past_key_values is None:
437
+ model_inputs = {'inputs_embeds': inputs_embeds}
438
+ else:
439
+ model_inputs = {'input_ids': input_ids}
440
+
441
+ im_mask = im_mask
442
+
443
+ model_inputs.update({
444
+ 'position_ids': position_ids,
445
+ 'past_key_values': past_key_values,
446
+ 'use_cache': kwargs.get('use_cache'),
447
+ 'attention_mask': attention_mask,
448
+ 'im_mask': im_mask,
449
+ })
450
+ return model_inputs
451
+
452
+ @staticmethod
453
+ def _reorder_cache(past_key_values, beam_idx):
454
+ reordered_past = ()
455
+ for layer_past in past_key_values:
456
+ reordered_past += (tuple(
457
+ past_state.index_select(0, beam_idx.to(past_state.device))
458
+ for past_state in layer_past), )
459
+ return reordered_past
460
+
461
+ def build_inputs(self,
462
+ tokenizer,
463
+ query: str,
464
+ history: List[Tuple[str, str]] = [],
465
+ meta_instruction=''):
466
+ prompt = ''
467
+ if meta_instruction:
468
+ prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
469
+ else:
470
+ prompt += '<s>'
471
+ for record in history:
472
+ prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
473
+ prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
474
+ return tokenizer([prompt], return_tensors='pt')
475
+
476
+ @torch.no_grad()
477
+ def chat(
478
+ self,
479
+ tokenizer,
480
+ query: str,
481
+ image: torch.Tensor = None,
482
+ history: List[Tuple[str, str]] = [],
483
+ streamer: Optional[BaseStreamer] = None,
484
+ max_new_tokens: int = 1024,
485
+ do_sample: bool = True,
486
+ temperature: float = 1.0,
487
+ top_p: float = 0.8,
488
+ repetition_penalty: float=1.005,
489
+ meta_instruction:
490
+ str = 'You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n'
491
+ '- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
492
+ '- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n'
493
+ '- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.',
494
+ **kwargs,
495
+ ):
496
+ if image is None:
497
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
498
+ im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool()
499
+ else:
500
+ image = self.encode_img(image)
501
+ inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image, history, meta_instruction)
502
+ inputs = {
503
+ k: v.to(self.device)
504
+ for k, v in inputs.items() if torch.is_tensor(v)
505
+ }
506
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
507
+ eos_token_id = [
508
+ tokenizer.eos_token_id,
509
+ tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
510
+ ]
511
+ outputs = self.generate(
512
+ **inputs,
513
+ streamer=streamer,
514
+ max_new_tokens=max_new_tokens,
515
+ do_sample=do_sample,
516
+ temperature=temperature,
517
+ top_p=top_p,
518
+ eos_token_id=eos_token_id,
519
+ repetition_penalty=repetition_penalty,
520
+ im_mask=im_mask,
521
+ **kwargs,
522
+ )
523
+ if image is None:
524
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
525
+ else:
526
+ outputs = outputs[0].cpu().tolist()
527
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
528
+ response = response.split('[UNUSED_TOKEN_145]')[0]
529
+ history = history + [(query, response)]
530
+ return response, history
531
+
532
+ @torch.no_grad()
533
+ def stream_chat(
534
+ self,
535
+ tokenizer,
536
+ query: str,
537
+ history: List[Tuple[str, str]] = [],
538
+ max_new_tokens: int = 1024,
539
+ do_sample: bool = True,
540
+ temperature: float = 0.8,
541
+ top_p: float = 0.8,
542
+ **kwargs,
543
+ ):
544
+ """Return a generator in format: (response, history) Eg.
545
+
546
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) ('你好,有什么可以帮助您的吗?', [('你好',
547
+ '你好,有什么可以帮助您的吗?')])
548
+ """
549
+ if BaseStreamer is None:
550
+ raise ModuleNotFoundError(
551
+ 'The version of `transformers` is too low. Please make sure '
552
+ 'that you have installed `transformers>=4.28.0`.')
553
+
554
+ response_queue = queue.Queue(maxsize=20)
555
+
556
+ class ChatStreamer(BaseStreamer):
557
+
558
+ def __init__(self, tokenizer) -> None:
559
+ super().__init__()
560
+ self.tokenizer = tokenizer
561
+ self.queue = response_queue
562
+ self.query = query
563
+ self.history = history
564
+ self.response = ''
565
+ self.received_inputs = False
566
+ self.queue.put(
567
+ (self.response, history + [(self.query, self.response)]))
568
+
569
+ def put(self, value):
570
+ if len(value.shape) > 1 and value.shape[0] > 1:
571
+ raise ValueError('ChatStreamer only supports batch size 1')
572
+ elif len(value.shape) > 1:
573
+ value = value[0]
574
+
575
+ if not self.received_inputs:
576
+ # The first received value is input_ids, ignore here
577
+ self.received_inputs = True
578
+ return
579
+
580
+ token = self.tokenizer.decode([value[-1]],
581
+ skip_special_tokens=True)
582
+ if token.strip() != '[UNUSED_TOKEN_145]':
583
+ self.response = self.response + token
584
+ history = self.history + [(self.query, self.response)]
585
+ self.queue.put((self.response, history))
586
+
587
+ def end(self):
588
+ self.queue.put(None)
589
+
590
+ def stream_producer():
591
+ return self.chat(
592
+ tokenizer=tokenizer,
593
+ query=query,
594
+ streamer=ChatStreamer(tokenizer=tokenizer),
595
+ history=history,
596
+ max_new_tokens=max_new_tokens,
597
+ do_sample=do_sample,
598
+ temperature=temperature,
599
+ top_p=top_p,
600
+ **kwargs,
601
+ )
602
+
603
+ def consumer():
604
+ producer = threading.Thread(target=stream_producer)
605
+ producer.start()
606
+ while True:
607
+ res = response_queue.get()
608
+ if res is None:
609
+ return
610
+ yield res
611
+
612
+ return consumer()
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a350a6ee74dec9f224b8b6f902f5274dc55688bfd372b8d4b27d0a2d71299b2
3
+ size 4902598460
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,947 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17333676032
4
+ },
5
+ "weight_map": {
6
+ "model.layers.0.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
7
+ "model.layers.0.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.0.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.0.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.0.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.0.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.0.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.1.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.1.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.1.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.1.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.1.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.1.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.1.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.1.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.1.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.1.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.1.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.1.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.10.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.10.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.10.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.10.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.10.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.10.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.10.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.10.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.10.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.10.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.10.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.10.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.10.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.10.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.10.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.10.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.10.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.11.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.11.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.11.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.11.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.11.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.11.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.11.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.11.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.11.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.11.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.11.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.11.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.11.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.11.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.11.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.11.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.11.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.12.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.12.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.12.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.12.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.12.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.12.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.12.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.12.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.12.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.12.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.12.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.12.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.12.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.12.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.12.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.12.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.12.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.13.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.13.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.13.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.13.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.13.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.13.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.13.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.13.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.13.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.13.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.13.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.13.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.13.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.13.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.13.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.13.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.13.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.14.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.14.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.14.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.14.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.14.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.14.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.14.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.14.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.14.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.14.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.14.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.14.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.14.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.14.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.14.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.14.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.14.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.15.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.15.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.15.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.15.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.15.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.15.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.15.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.15.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.15.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.15.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.15.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.15.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.15.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.15.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.15.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.15.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.15.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.16.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.16.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.16.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.16.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.16.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.16.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.16.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.16.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.16.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.16.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.16.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.16.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.16.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.16.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.16.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.16.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.16.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.17.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.17.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.17.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.17.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.17.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.17.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.17.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.17.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.17.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.17.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.17.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.17.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.17.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.17.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.17.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.17.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.17.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.18.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.18.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.18.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
179
+ "model.layers.18.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
180
+ "model.layers.18.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
181
+ "model.layers.18.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
182
+ "model.layers.18.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
183
+ "model.layers.18.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
184
+ "model.layers.18.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
185
+ "model.layers.18.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
186
+ "model.layers.18.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
187
+ "model.layers.18.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
188
+ "model.layers.18.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
189
+ "model.layers.18.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
190
+ "model.layers.18.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
191
+ "model.layers.18.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
192
+ "model.layers.18.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
193
+ "model.layers.19.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
194
+ "model.layers.19.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
195
+ "model.layers.19.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
196
+ "model.layers.19.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
197
+ "model.layers.19.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
198
+ "model.layers.19.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
199
+ "model.layers.19.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.19.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
201
+ "model.layers.19.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
202
+ "model.layers.19.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
203
+ "model.layers.19.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.19.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.19.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.19.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.19.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.19.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.19.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.2.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
211
+ "model.layers.2.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
212
+ "model.layers.2.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
213
+ "model.layers.2.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
214
+ "model.layers.2.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
215
+ "model.layers.2.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.2.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.2.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.2.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.2.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.2.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.2.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.2.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.2.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.2.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
225
+ "model.layers.2.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
226
+ "model.layers.2.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
227
+ "model.layers.20.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.20.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.20.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.20.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.20.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.20.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.20.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.20.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.20.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.20.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.20.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.20.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.20.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.20.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.20.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.20.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
243
+ "model.layers.20.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
244
+ "model.layers.21.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
245
+ "model.layers.21.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
246
+ "model.layers.21.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
247
+ "model.layers.21.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
248
+ "model.layers.21.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.21.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.21.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.21.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.21.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.21.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.21.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.21.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.21.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.21.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.21.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.21.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.21.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.22.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.22.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.22.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.22.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.22.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.22.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.22.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.22.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
269
+ "model.layers.22.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
270
+ "model.layers.22.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
271
+ "model.layers.22.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
272
+ "model.layers.22.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
273
+ "model.layers.22.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
274
+ "model.layers.22.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
275
+ "model.layers.22.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
276
+ "model.layers.22.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
277
+ "model.layers.22.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
278
+ "model.layers.23.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
279
+ "model.layers.23.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
280
+ "model.layers.23.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
281
+ "model.layers.23.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
282
+ "model.layers.23.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
283
+ "model.layers.23.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
284
+ "model.layers.23.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
285
+ "model.layers.23.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
286
+ "model.layers.23.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
287
+ "model.layers.23.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
288
+ "model.layers.23.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
289
+ "model.layers.23.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
290
+ "model.layers.23.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
291
+ "model.layers.23.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
292
+ "model.layers.23.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
293
+ "model.layers.23.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
294
+ "model.layers.23.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
295
+ "model.layers.24.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
296
+ "model.layers.24.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
297
+ "model.layers.24.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
298
+ "model.layers.24.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
299
+ "model.layers.24.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
300
+ "model.layers.24.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
301
+ "model.layers.24.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
302
+ "model.layers.24.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
303
+ "model.layers.24.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
304
+ "model.layers.24.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
305
+ "model.layers.24.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
306
+ "model.layers.24.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
307
+ "model.layers.24.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
308
+ "model.layers.24.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
309
+ "model.layers.24.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
310
+ "model.layers.24.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
311
+ "model.layers.24.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
312
+ "model.layers.25.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
313
+ "model.layers.25.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
314
+ "model.layers.25.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
315
+ "model.layers.25.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
316
+ "model.layers.25.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
317
+ "model.layers.25.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
318
+ "model.layers.25.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
319
+ "model.layers.25.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
320
+ "model.layers.25.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
321
+ "model.layers.25.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
322
+ "model.layers.25.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
323
+ "model.layers.25.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
324
+ "model.layers.25.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
325
+ "model.layers.25.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
326
+ "model.layers.25.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
327
+ "model.layers.25.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
328
+ "model.layers.25.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
329
+ "model.layers.26.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
330
+ "model.layers.26.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
331
+ "model.layers.26.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
332
+ "model.layers.26.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
333
+ "model.layers.26.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
334
+ "model.layers.26.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
335
+ "model.layers.26.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
336
+ "model.layers.26.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
337
+ "model.layers.26.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
338
+ "model.layers.26.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
339
+ "model.layers.26.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
340
+ "model.layers.26.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
341
+ "model.layers.26.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
342
+ "model.layers.26.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
343
+ "model.layers.26.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
344
+ "model.layers.26.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
345
+ "model.layers.26.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
346
+ "model.layers.27.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
347
+ "model.layers.27.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
348
+ "model.layers.27.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
349
+ "model.layers.27.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
350
+ "model.layers.27.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
351
+ "model.layers.27.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
352
+ "model.layers.27.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
353
+ "model.layers.27.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
354
+ "model.layers.27.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
355
+ "model.layers.27.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
356
+ "model.layers.27.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
357
+ "model.layers.27.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
358
+ "model.layers.27.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
359
+ "model.layers.27.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
360
+ "model.layers.27.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
361
+ "model.layers.27.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
362
+ "model.layers.27.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
363
+ "model.layers.28.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
364
+ "model.layers.28.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
365
+ "model.layers.28.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
366
+ "model.layers.28.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
367
+ "model.layers.28.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
368
+ "model.layers.28.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
369
+ "model.layers.28.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
370
+ "model.layers.28.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
371
+ "model.layers.28.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
372
+ "model.layers.28.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
373
+ "model.layers.28.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
374
+ "model.layers.28.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
375
+ "model.layers.28.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
376
+ "model.layers.28.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
377
+ "model.layers.28.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
378
+ "model.layers.28.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
379
+ "model.layers.28.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
380
+ "model.layers.29.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
381
+ "model.layers.29.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
382
+ "model.layers.29.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
383
+ "model.layers.29.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
384
+ "model.layers.29.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
385
+ "model.layers.29.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
386
+ "model.layers.29.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
387
+ "model.layers.29.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
388
+ "model.layers.29.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
389
+ "model.layers.29.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
390
+ "model.layers.29.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
391
+ "model.layers.29.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
392
+ "model.layers.29.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
393
+ "model.layers.29.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
394
+ "model.layers.29.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
395
+ "model.layers.29.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
396
+ "model.layers.29.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
397
+ "model.layers.3.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
398
+ "model.layers.3.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
399
+ "model.layers.3.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
400
+ "model.layers.3.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
401
+ "model.layers.3.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
402
+ "model.layers.3.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
403
+ "model.layers.3.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
404
+ "model.layers.3.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
405
+ "model.layers.3.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
406
+ "model.layers.3.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
407
+ "model.layers.3.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
408
+ "model.layers.3.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
409
+ "model.layers.3.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
410
+ "model.layers.3.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
411
+ "model.layers.3.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
412
+ "model.layers.3.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
413
+ "model.layers.3.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
414
+ "model.layers.30.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
415
+ "model.layers.30.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
416
+ "model.layers.30.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
417
+ "model.layers.30.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
418
+ "model.layers.30.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
419
+ "model.layers.30.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
420
+ "model.layers.30.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
421
+ "model.layers.30.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
422
+ "model.layers.30.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
423
+ "model.layers.30.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
424
+ "model.layers.30.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
425
+ "model.layers.30.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
426
+ "model.layers.30.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
427
+ "model.layers.30.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
428
+ "model.layers.30.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
429
+ "model.layers.30.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
430
+ "model.layers.30.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
431
+ "model.layers.31.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
432
+ "model.layers.31.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
433
+ "model.layers.31.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
434
+ "model.layers.31.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
435
+ "model.layers.31.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
436
+ "model.layers.31.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
437
+ "model.layers.31.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
438
+ "model.layers.31.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
439
+ "model.layers.31.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
440
+ "model.layers.31.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
441
+ "model.layers.31.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
442
+ "model.layers.31.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
443
+ "model.layers.31.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
444
+ "model.layers.31.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
445
+ "model.layers.31.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
446
+ "model.layers.31.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
447
+ "model.layers.31.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
448
+ "model.layers.4.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
449
+ "model.layers.4.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
450
+ "model.layers.4.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
451
+ "model.layers.4.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
452
+ "model.layers.4.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
453
+ "model.layers.4.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
454
+ "model.layers.4.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
455
+ "model.layers.4.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
456
+ "model.layers.4.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
457
+ "model.layers.4.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
458
+ "model.layers.4.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
459
+ "model.layers.4.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
460
+ "model.layers.4.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
461
+ "model.layers.4.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
462
+ "model.layers.4.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
463
+ "model.layers.4.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
464
+ "model.layers.4.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
465
+ "model.layers.5.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
466
+ "model.layers.5.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
467
+ "model.layers.5.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
468
+ "model.layers.5.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
469
+ "model.layers.5.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
470
+ "model.layers.5.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
471
+ "model.layers.5.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
472
+ "model.layers.5.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
473
+ "model.layers.5.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
474
+ "model.layers.5.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
475
+ "model.layers.5.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
476
+ "model.layers.5.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
477
+ "model.layers.5.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
478
+ "model.layers.5.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
479
+ "model.layers.5.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
480
+ "model.layers.5.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
481
+ "model.layers.5.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
482
+ "model.layers.6.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
483
+ "model.layers.6.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
484
+ "model.layers.6.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
485
+ "model.layers.6.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
486
+ "model.layers.6.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
487
+ "model.layers.6.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
488
+ "model.layers.6.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
489
+ "model.layers.6.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
490
+ "model.layers.6.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
491
+ "model.layers.6.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
492
+ "model.layers.6.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
493
+ "model.layers.6.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
494
+ "model.layers.6.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
495
+ "model.layers.6.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
496
+ "model.layers.6.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
497
+ "model.layers.6.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
498
+ "model.layers.6.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
499
+ "model.layers.7.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
500
+ "model.layers.7.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
501
+ "model.layers.7.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
502
+ "model.layers.7.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
503
+ "model.layers.7.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
504
+ "model.layers.7.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
505
+ "model.layers.7.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
506
+ "model.layers.7.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
507
+ "model.layers.7.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
508
+ "model.layers.7.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
509
+ "model.layers.7.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
510
+ "model.layers.7.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
511
+ "model.layers.7.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
512
+ "model.layers.7.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
513
+ "model.layers.7.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
514
+ "model.layers.7.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
515
+ "model.layers.7.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
516
+ "model.layers.8.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
517
+ "model.layers.8.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
518
+ "model.layers.8.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
519
+ "model.layers.8.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
520
+ "model.layers.8.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
521
+ "model.layers.8.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
522
+ "model.layers.8.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
523
+ "model.layers.8.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
524
+ "model.layers.8.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
525
+ "model.layers.8.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
526
+ "model.layers.8.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
527
+ "model.layers.8.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
528
+ "model.layers.8.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
529
+ "model.layers.8.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
530
+ "model.layers.8.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
531
+ "model.layers.8.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
532
+ "model.layers.8.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
533
+ "model.layers.9.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
534
+ "model.layers.9.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
535
+ "model.layers.9.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
536
+ "model.layers.9.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
537
+ "model.layers.9.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
538
+ "model.layers.9.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
539
+ "model.layers.9.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
540
+ "model.layers.9.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
541
+ "model.layers.9.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
542
+ "model.layers.9.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
543
+ "model.layers.9.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
544
+ "model.layers.9.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
545
+ "model.layers.9.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
546
+ "model.layers.9.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
547
+ "model.layers.9.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
548
+ "model.layers.9.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
549
+ "model.layers.9.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
550
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin",
551
+ "model.tok_embeddings.weight": "pytorch_model-00001-of-00002.bin",
552
+ "output.weight": "pytorch_model-00002-of-00002.bin",
553
+ "vision_proj.0.bias": "pytorch_model-00002-of-00002.bin",
554
+ "vision_proj.0.weight": "pytorch_model-00002-of-00002.bin",
555
+ "vision_proj.2.bias": "pytorch_model-00002-of-00002.bin",
556
+ "vision_proj.2.weight": "pytorch_model-00002-of-00002.bin",
557
+ "vit.vision_tower.vision_model.embeddings.class_embedding": "pytorch_model-00002-of-00002.bin",
558
+ "vit.vision_tower.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00002-of-00002.bin",
559
+ "vit.vision_tower.vision_model.embeddings.position_embedding.weight": "pytorch_model-00002-of-00002.bin",
560
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
561
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
562
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
563
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
564
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
565
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
566
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
567
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
568
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
569
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
570
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
571
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
572
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
573
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
574
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
575
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
576
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
577
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
578
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
579
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
580
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
581
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
582
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
583
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
584
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
585
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
586
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
587
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
588
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
589
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
590
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
591
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
592
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
593
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
594
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
595
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
596
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
597
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
598
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
599
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
600
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
601
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
602
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
603
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
604
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
605
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
606
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
607
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
608
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
609
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
610
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
611
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
612
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
613
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
614
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
615
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
616
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
617
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
618
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
619
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
620
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
621
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
622
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
623
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
624
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
625
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
626
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
627
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
628
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
629
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
630
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
631
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
632
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
633
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
634
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
635
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
636
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
637
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
638
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
639
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
640
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
641
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
642
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
643
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
644
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
645
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
646
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
647
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
648
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
649
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
650
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
651
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
652
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
653
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
654
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
655
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
656
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
657
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
658
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
659
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
660
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
661
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
662
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
663
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
664
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
665
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
666
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
667
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
668
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
669
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
670
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
671
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
672
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
673
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
674
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
675
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
676
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
677
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
678
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
679
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
680
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
681
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
682
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
683
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
684
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
685
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
686
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
687
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
688
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
689
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
690
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
691
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
692
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
693
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
694
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
695
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
696
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
697
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
698
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
699
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
700
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
701
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
702
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
703
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
704
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
705
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
706
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
707
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
708
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
709
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
710
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
711
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
712
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
713
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
714
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
715
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
716
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
717
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
718
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
719
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
720
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
721
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
722
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
723
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
724
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
725
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
726
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
727
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
728
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
729
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
730
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
731
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
732
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
733
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
734
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
735
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
736
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
737
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
738
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
739
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
740
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
741
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
742
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
743
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
744
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
745
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
746
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
747
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
748
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
749
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
750
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
751
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
752
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
753
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
754
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
755
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
756
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
757
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
758
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
759
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
760
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
761
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
762
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
763
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
764
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
765
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
766
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
767
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
768
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
769
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
770
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
771
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
772
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
773
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
774
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
775
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
776
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
777
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
778
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
779
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
780
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
781
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
782
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
783
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
784
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
785
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
786
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
787
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
788
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
789
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
790
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
791
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
792
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
793
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
794
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
795
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
796
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
797
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
798
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
799
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
800
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
801
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
802
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
803
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
804
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
805
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
806
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
807
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
808
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
809
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
810
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
811
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
812
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
813
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
814
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
815
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
816
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
817
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
818
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
819
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
820
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
821
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
822
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
823
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
824
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
825
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
826
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
827
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
828
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
829
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
830
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
831
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
832
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
833
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
834
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
835
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
836
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
837
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
838
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
839
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
840
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
841
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
842
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
843
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
844
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
845
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
846
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
847
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
848
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
849
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
850
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
851
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
852
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
853
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
854
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
855
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
856
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
857
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
858
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
859
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
860
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
861
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
862
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
863
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
864
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
865
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
866
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
867
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
868
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
869
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
870
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
871
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
872
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
873
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
874
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
875
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
876
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
877
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
878
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
879
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
880
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
881
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
882
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
883
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
884
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
885
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
886
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
887
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
888
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
889
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
890
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
891
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
892
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
893
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
894
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
895
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
896
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
897
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
898
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
899
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
900
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
901
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
902
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
903
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
904
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
905
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
906
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
907
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
908
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
909
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
910
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
911
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
912
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
913
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
914
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
915
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
916
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
917
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
918
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
919
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
920
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
921
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
922
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
923
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
924
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
925
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
926
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
927
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
928
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
929
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
930
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
931
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
932
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
933
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
934
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
935
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
936
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
937
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
938
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
939
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
940
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
941
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
942
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
943
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
944
+ "vit.vision_tower.vision_model.pre_layrnorm.bias": "pytorch_model-00002-of-00002.bin",
945
+ "vit.vision_tower.vision_model.pre_layrnorm.weight": "pytorch_model-00002-of-00002.bin"
946
+ }
947
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm_xcomposer2.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) InternLM. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """Tokenization classes for IntermLM."""
20
+ import os
21
+ from shutil import copyfile
22
+ from typing import Any, Dict, List, Optional, Tuple
23
+
24
+ import sentencepiece as spm
25
+ from transformers.tokenization_utils import PreTrainedTokenizer
26
+ from transformers.utils import logging
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
31
+
32
+ PRETRAINED_VOCAB_FILES_MAP = {}
33
+
34
+
35
+ class InternLMXComposer2Tokenizer(PreTrainedTokenizer):
36
+ """Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+ """ Initialization"""
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {
85
+ i
86
+ for i, tok in enumerate(vocab) if not tok.startswith('▁')
87
+ }
88
+ return self._no_prefix_space_tokens
89
+
90
+ @property
91
+ def vocab_size(self):
92
+ """Returns vocab size."""
93
+ return self.sp_model.get_piece_size()
94
+
95
+ @property
96
+ def bos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.bos_id()
98
+
99
+ @property
100
+ def eos_token_id(self) -> Optional[int]:
101
+ return self.sp_model.eos_id()
102
+
103
+ def get_vocab(self):
104
+ """Returns vocab as a dict."""
105
+ vocab = {
106
+ self.convert_ids_to_tokens(i): i
107
+ for i in range(self.vocab_size)
108
+ }
109
+ vocab.update(self.added_tokens_encoder)
110
+ return vocab
111
+
112
+ def _tokenize(self, text):
113
+ """Returns a tokenized string."""
114
+ return self.sp_model.encode(text, out_type=str)
115
+
116
+ def _convert_token_to_id(self, token):
117
+ """Converts a token (str) in an id using the vocab."""
118
+ return self.sp_model.piece_to_id(token)
119
+
120
+ def _convert_id_to_token(self, index):
121
+ """Converts an index (integer) in a token (str) using the vocab."""
122
+ token = self.sp_model.IdToPiece(index)
123
+ return token
124
+
125
+ def _maybe_add_prefix_space(self, tokens, decoded):
126
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
127
+ return ' ' + decoded
128
+ else:
129
+ return decoded
130
+
131
+ def convert_tokens_to_string(self, tokens):
132
+ """Converts a sequence of tokens (string) in a single string."""
133
+ current_sub_tokens = []
134
+ out_string = ''
135
+ prev_is_special = False
136
+ for token in tokens:
137
+ # make sure that special tokens are not decoded using sentencepiece model
138
+ if token in self.all_special_tokens:
139
+ if not prev_is_special:
140
+ out_string += ' '
141
+ out_string += self.sp_model.decode(current_sub_tokens) + token
142
+ prev_is_special = True
143
+ current_sub_tokens = []
144
+ else:
145
+ current_sub_tokens.append(token)
146
+ prev_is_special = False
147
+ out_string += self.sp_model.decode(current_sub_tokens)
148
+ out_string = self.clean_up_tokenization(out_string)
149
+ out_string = self._maybe_add_prefix_space(
150
+ tokens=tokens, decoded=out_string)
151
+ return out_string[1:]
152
+
153
+ def save_vocabulary(self,
154
+ save_directory,
155
+ filename_prefix: Optional[str] = None) -> Tuple[str]:
156
+ """Save the vocabulary and special tokens file to a directory.
157
+
158
+ Args:
159
+ save_directory (`str`):
160
+ The directory in which to save the vocabulary.
161
+
162
+ Returns:
163
+ `Tuple(str)`: Paths to the files saved.
164
+ """
165
+ if not os.path.isdir(save_directory):
166
+ logger.error(
167
+ f'Vocabulary path ({save_directory}) should be a directory')
168
+ return
169
+ out_vocab_file = os.path.join(
170
+ save_directory,
171
+ (filename_prefix + '-' if filename_prefix else '') +
172
+ VOCAB_FILES_NAMES['vocab_file'])
173
+
174
+ if os.path.abspath(self.vocab_file) != os.path.abspath(
175
+ out_vocab_file) and os.path.isfile(self.vocab_file):
176
+ copyfile(self.vocab_file, out_vocab_file)
177
+ elif not os.path.isfile(self.vocab_file):
178
+ with open(out_vocab_file, 'wb') as fi:
179
+ content_spiece_model = self.sp_model.serialized_model_proto()
180
+ fi.write(content_spiece_model)
181
+
182
+ return (out_vocab_file, )
183
+
184
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
185
+ if self.add_bos_token:
186
+ bos_token_ids = [self.bos_token_id]
187
+ else:
188
+ bos_token_ids = []
189
+
190
+ output = bos_token_ids + token_ids_0
191
+
192
+ if token_ids_1 is not None:
193
+ output = output + token_ids_1
194
+
195
+ if self.add_eos_token:
196
+ output = output + [self.eos_token_id]
197
+
198
+ return output
199
+
200
+ def get_special_tokens_mask(
201
+ self,
202
+ token_ids_0: List[int],
203
+ token_ids_1: Optional[List[int]] = None,
204
+ already_has_special_tokens: bool = False) -> List[int]:
205
+ """Retrieve sequence ids from a token list that has no special tokens
206
+ added. This method is called when adding special tokens using the
207
+ tokenizer `prepare_for_model` method.
208
+
209
+ Args:
210
+ token_ids_0 (`List[int]`):
211
+ List of IDs.
212
+ token_ids_1 (`List[int]`, *optional*):
213
+ Optional second list of IDs for sequence pairs.
214
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
215
+ Whether or not the token list is already formatted with special tokens for the model.
216
+
217
+ Returns:
218
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
219
+ """
220
+ if already_has_special_tokens:
221
+ return super().get_special_tokens_mask(
222
+ token_ids_0=token_ids_0,
223
+ token_ids_1=token_ids_1,
224
+ already_has_special_tokens=True)
225
+
226
+ if token_ids_1 is None:
227
+ return [1] + ([0] * len(token_ids_0)) + [1]
228
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + (
229
+ [0] * len(token_ids_1)) + [1]
230
+
231
+ def create_token_type_ids_from_sequences(
232
+ self,
233
+ token_ids_0: List[int],
234
+ token_ids_1: Optional[List[int]] = None) -> List[int]:
235
+ """Create a mask from the two sequences passed to be used in a
236
+ sequence-pair classification task. T5 does not make use of token type
237
+ ids, therefore a list of zeros is returned.
238
+
239
+ Args:
240
+ token_ids_0 (`List[int]`):
241
+ List of IDs.
242
+ token_ids_1 (`List[int]`, *optional*):
243
+ Optional second list of IDs for sequence pairs.
244
+
245
+ Returns:
246
+ `List[int]`: List of zeros.
247
+ """
248
+ eos = [self.eos_token_id]
249
+
250
+ if token_ids_1 is None:
251
+ return len(token_ids_0 + eos) * [0]
252
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_internlm_xcomposer2.InternLMXComposer2Tokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "bos_token": "<s>",
9
+ "clean_up_tokenization_spaces": false,
10
+ "eos_token": "</s>",
11
+ "model_max_length": 1000000000000000019884624838656,
12
+ "pad_token": "</s>",
13
+ "padding_side": "right",
14
+ "tokenizer_class": "InternLMXComposer2Tokenizer",
15
+ "unk_token": "<unk>"
16
+ }
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)