x54-729
commited on
Commit
·
5966e12
1
Parent(s):
1611f45
support flash attn 2
Browse files- configuration_internlm.py +32 -3
- modeling_internlm2.py +216 -81
configuration_internlm.py
CHANGED
@@ -106,7 +106,9 @@ class InternLMConfig(PretrainedConfig):
|
|
106 |
eos_token_id=2,
|
107 |
tie_word_embeddings=False,
|
108 |
bias=True,
|
109 |
-
|
|
|
|
|
110 |
**kwargs,
|
111 |
):
|
112 |
self.vocab_size = vocab_size
|
@@ -115,6 +117,7 @@ class InternLMConfig(PretrainedConfig):
|
|
115 |
self.intermediate_size = intermediate_size
|
116 |
self.num_hidden_layers = num_hidden_layers
|
117 |
self.num_attention_heads = num_attention_heads
|
|
|
118 |
|
119 |
if num_key_value_heads is None:
|
120 |
num_key_value_heads = num_attention_heads
|
@@ -124,8 +127,13 @@ class InternLMConfig(PretrainedConfig):
|
|
124 |
self.initializer_range = initializer_range
|
125 |
self.rms_norm_eps = rms_norm_eps
|
126 |
self.use_cache = use_cache
|
127 |
-
self.
|
128 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
129 |
super().__init__(
|
130 |
pad_token_id=pad_token_id,
|
131 |
bos_token_id=bos_token_id,
|
@@ -133,3 +141,24 @@ class InternLMConfig(PretrainedConfig):
|
|
133 |
tie_word_embeddings=tie_word_embeddings,
|
134 |
**kwargs,
|
135 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
eos_token_id=2,
|
107 |
tie_word_embeddings=False,
|
108 |
bias=True,
|
109 |
+
rope_theta=10000,
|
110 |
+
rope_scaling=None,
|
111 |
+
attn_implementation="eager",
|
112 |
**kwargs,
|
113 |
):
|
114 |
self.vocab_size = vocab_size
|
|
|
117 |
self.intermediate_size = intermediate_size
|
118 |
self.num_hidden_layers = num_hidden_layers
|
119 |
self.num_attention_heads = num_attention_heads
|
120 |
+
self.bias = bias
|
121 |
|
122 |
if num_key_value_heads is None:
|
123 |
num_key_value_heads = num_attention_heads
|
|
|
127 |
self.initializer_range = initializer_range
|
128 |
self.rms_norm_eps = rms_norm_eps
|
129 |
self.use_cache = use_cache
|
130 |
+
self.rope_theta = rope_theta
|
131 |
+
self.rope_scaling = rope_scaling
|
132 |
+
self._rope_scaling_validation()
|
133 |
+
|
134 |
+
self.attn_implementation = attn_implementation
|
135 |
+
if self.attn_implementation is None:
|
136 |
+
self.attn_implementation = "eager"
|
137 |
super().__init__(
|
138 |
pad_token_id=pad_token_id,
|
139 |
bos_token_id=bos_token_id,
|
|
|
141 |
tie_word_embeddings=tie_word_embeddings,
|
142 |
**kwargs,
|
143 |
)
|
144 |
+
|
145 |
+
def _rope_scaling_validation(self):
|
146 |
+
"""
|
147 |
+
Validate the `rope_scaling` configuration.
|
148 |
+
"""
|
149 |
+
if self.rope_scaling is None:
|
150 |
+
return
|
151 |
+
|
152 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
153 |
+
raise ValueError(
|
154 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
155 |
+
f"got {self.rope_scaling}"
|
156 |
+
)
|
157 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
158 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
159 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
160 |
+
raise ValueError(
|
161 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
162 |
+
)
|
163 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
164 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
modeling_internlm2.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
-
#
|
2 |
-
# # Copyright (c) InternLM. All rights reserved.
|
3 |
#
|
4 |
-
# This code is based on
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
@@ -25,6 +21,7 @@ import warnings
|
|
25 |
from typing import List, Optional, Tuple, Union
|
26 |
|
27 |
import torch
|
|
|
28 |
import torch.utils.checkpoint
|
29 |
from einops import rearrange
|
30 |
from torch import nn
|
@@ -54,6 +51,18 @@ logger = logging.get_logger(__name__)
|
|
54 |
|
55 |
_CONFIG_FOR_DOC = "InternLM2Config"
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
59 |
def _make_causal_mask(
|
@@ -88,6 +97,7 @@ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]
|
|
88 |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
89 |
|
90 |
|
|
|
91 |
class InternLM2RMSNorm(nn.Module):
|
92 |
def __init__(self, hidden_size, eps=1e-6):
|
93 |
"""
|
@@ -105,6 +115,7 @@ class InternLM2RMSNorm(nn.Module):
|
|
105 |
return self.weight * hidden_states.to(input_dtype)
|
106 |
|
107 |
|
|
|
108 |
class InternLM2RotaryEmbedding(nn.Module):
|
109 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
110 |
super().__init__()
|
@@ -133,7 +144,7 @@ class InternLM2RotaryEmbedding(nn.Module):
|
|
133 |
def forward(self, x, seq_len=None):
|
134 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
135 |
if seq_len > self.max_seq_len_cached:
|
136 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=
|
137 |
|
138 |
return (
|
139 |
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
@@ -141,6 +152,7 @@ class InternLM2RotaryEmbedding(nn.Module):
|
|
141 |
)
|
142 |
|
143 |
|
|
|
144 |
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
145 |
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
146 |
|
@@ -160,6 +172,7 @@ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
|
160 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
161 |
|
162 |
|
|
|
163 |
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
164 |
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
165 |
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
@@ -188,6 +201,7 @@ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
|
188 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
189 |
|
190 |
|
|
|
191 |
def rotate_half(x):
|
192 |
"""Rotates half the hidden dims of the input."""
|
193 |
x1 = x[..., : x.shape[-1] // 2]
|
@@ -195,22 +209,13 @@ def rotate_half(x):
|
|
195 |
return torch.cat((-x2, x1), dim=-1)
|
196 |
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
|
206 |
-
else:
|
207 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
208 |
-
|
209 |
-
if k.size(2) == 1:
|
210 |
-
k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
|
211 |
-
else:
|
212 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
213 |
-
|
214 |
return q_embed, k_embed
|
215 |
|
216 |
|
@@ -231,6 +236,7 @@ class InternLM2MLP(nn.Module):
|
|
231 |
return down_proj
|
232 |
|
233 |
|
|
|
234 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
235 |
"""
|
236 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
@@ -243,6 +249,7 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
243 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
244 |
|
245 |
|
|
|
246 |
class InternLM2Attention(nn.Module):
|
247 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
248 |
|
@@ -273,21 +280,31 @@ class InternLM2Attention(nn.Module):
|
|
273 |
self._init_rope()
|
274 |
|
275 |
def _init_rope(self):
|
276 |
-
if self.config.
|
277 |
self.rotary_emb = InternLM2RotaryEmbedding(
|
278 |
self.head_dim,
|
279 |
max_position_embeddings=self.max_position_embeddings,
|
280 |
-
base=self.config.
|
281 |
-
)
|
282 |
-
elif self.config.rotary["type"] == "dynamic":
|
283 |
-
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
284 |
-
self.head_dim,
|
285 |
-
max_position_embeddings=self.max_position_embeddings,
|
286 |
-
base=self.config.rotary["base"],
|
287 |
-
scaling_factor=self.config.rotary.get("scaling_factor", 1.0),
|
288 |
)
|
289 |
else:
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
return self.rotary_emb
|
292 |
|
293 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
@@ -381,6 +398,7 @@ class InternLM2Attention(nn.Module):
|
|
381 |
return attn_output, attn_weights, past_key_value
|
382 |
|
383 |
|
|
|
384 |
class InternLM2FlashAttention2(InternLM2Attention):
|
385 |
"""
|
386 |
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
@@ -417,9 +435,8 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
417 |
qkv_states = rearrange(
|
418 |
qkv_states,
|
419 |
"b q (h gs d) -> b q h gs d",
|
420 |
-
gs=
|
421 |
d=self.head_dim,
|
422 |
-
q=q_len,
|
423 |
)
|
424 |
|
425 |
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
@@ -427,6 +444,10 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
427 |
key_states = qkv_states[..., -2, :]
|
428 |
value_states = qkv_states[..., -1, :]
|
429 |
|
|
|
|
|
|
|
|
|
430 |
kv_seq_len = key_states.shape[-2]
|
431 |
if past_key_value is not None:
|
432 |
kv_seq_len += past_key_value[0].shape[-2]
|
@@ -448,34 +469,9 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
448 |
|
449 |
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
450 |
|
451 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
452 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
453 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
454 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
455 |
-
# in fp32. (InternLM2RMSNorm handles it correctly)
|
456 |
-
|
457 |
-
input_dtype = query_states.dtype
|
458 |
-
if input_dtype == torch.float32:
|
459 |
-
# Handle the case where the model is quantized
|
460 |
-
if hasattr(self.config, "_pre_quantization_dtype"):
|
461 |
-
target_dtype = self.config._pre_quantization_dtype
|
462 |
-
else:
|
463 |
-
target_dtype = self.q_proj.weight.dtype
|
464 |
-
|
465 |
-
logger.warning_once(
|
466 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
467 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back "
|
468 |
-
f"the input in {target_dtype}."
|
469 |
-
)
|
470 |
-
|
471 |
-
query_states = query_states.to(target_dtype)
|
472 |
-
key_states = key_states.to(target_dtype)
|
473 |
-
value_states = value_states.to(target_dtype)
|
474 |
-
|
475 |
attn_output = self._flash_attention_forward(
|
476 |
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
477 |
)
|
478 |
-
|
479 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
480 |
attn_output = self.wo(attn_output)
|
481 |
|
@@ -484,16 +480,115 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
484 |
|
485 |
return attn_output, attn_weights, past_key_value
|
486 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
|
|
|
488 |
class InternLM2DecoderLayer(nn.Module):
|
489 |
def __init__(self, config: InternLM2Config):
|
490 |
super().__init__()
|
491 |
self.hidden_size = config.hidden_size
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
else InternLM2FlashAttention2(config=config)
|
496 |
-
)
|
497 |
self.feed_forward = InternLM2MLP(config)
|
498 |
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
499 |
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
@@ -565,9 +660,11 @@ InternLM2_START_DOCSTRING = r"""
|
|
565 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
566 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
567 |
etc.)
|
|
|
568 |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
569 |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
570 |
and behavior.
|
|
|
571 |
Parameters:
|
572 |
config ([`InternLM2Config`]):
|
573 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
@@ -576,6 +673,7 @@ InternLM2_START_DOCSTRING = r"""
|
|
576 |
"""
|
577 |
|
578 |
|
|
|
579 |
@add_start_docstrings(
|
580 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
581 |
InternLM2_START_DOCSTRING,
|
@@ -586,7 +684,6 @@ class InternLM2PreTrainedModel(PreTrainedModel):
|
|
586 |
supports_gradient_checkpointing = True
|
587 |
_no_split_modules = ["InternLM2DecoderLayer"]
|
588 |
_skip_keys_device_placement = "past_key_values"
|
589 |
-
_supports_flash_attn_2 = True
|
590 |
|
591 |
def _init_weights(self, module):
|
592 |
std = self.config.initializer_range
|
@@ -605,34 +702,45 @@ InternLM2_INPUTS_DOCSTRING = r"""
|
|
605 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
606 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
607 |
it.
|
|
|
608 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
609 |
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
610 |
[What are input IDs?](../glossary#input-ids)
|
611 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
612 |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
613 |
- 1 for tokens that are **not masked**,
|
614 |
- 0 for tokens that are **masked**.
|
|
|
615 |
[What are attention masks?](../glossary#attention-mask)
|
|
|
616 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
617 |
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
618 |
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
619 |
`past_key_values`).
|
|
|
620 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
621 |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
622 |
information on the default strategy.
|
|
|
623 |
- 1 indicates the head is **not masked**,
|
624 |
- 0 indicates the head is **masked**.
|
625 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
626 |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
627 |
config.n_positions - 1]`.
|
|
|
628 |
[What are position IDs?](../glossary#position-ids)
|
629 |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
630 |
when `config.use_cache=True`):
|
631 |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
632 |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
633 |
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
|
|
634 |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
635 |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
|
|
636 |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
637 |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
638 |
of shape `(batch_size, sequence_length)`.
|
@@ -654,6 +762,7 @@ InternLM2_INPUTS_DOCSTRING = r"""
|
|
654 |
"""
|
655 |
|
656 |
|
|
|
657 |
@add_start_docstrings(
|
658 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
659 |
InternLM2_START_DOCSTRING,
|
@@ -661,6 +770,7 @@ InternLM2_INPUTS_DOCSTRING = r"""
|
|
661 |
class InternLM2Model(InternLM2PreTrainedModel):
|
662 |
"""
|
663 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
|
|
664 |
Args:
|
665 |
config: InternLM2Config
|
666 |
"""
|
@@ -671,8 +781,10 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
671 |
super().__init__(config)
|
672 |
self.padding_idx = config.pad_token_id
|
673 |
self.vocab_size = config.vocab_size
|
|
|
674 |
|
675 |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
676 |
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
677 |
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
678 |
|
@@ -686,7 +798,6 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
686 |
def set_input_embeddings(self, value):
|
687 |
self.tok_embeddings = value
|
688 |
|
689 |
-
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
690 |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
691 |
# create causal mask
|
692 |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
@@ -756,14 +867,18 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
756 |
|
757 |
if inputs_embeds is None:
|
758 |
inputs_embeds = self.tok_embeddings(input_ids)
|
759 |
-
|
760 |
-
if
|
761 |
-
|
762 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
763 |
)
|
764 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
765 |
-
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
766 |
-
)
|
767 |
|
768 |
# embed positions
|
769 |
hidden_states = inputs_embeds
|
@@ -837,6 +952,7 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
837 |
)
|
838 |
|
839 |
|
|
|
840 |
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
841 |
_auto_class = "AutoModelForCausalLM"
|
842 |
|
@@ -890,14 +1006,20 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
890 |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
891 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
892 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
893 |
Returns:
|
|
|
894 |
Example:
|
|
|
895 |
```python
|
896 |
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
|
|
897 |
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
898 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
899 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
900 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
901 |
>>> # Generate
|
902 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
903 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
@@ -1000,11 +1122,15 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1000 |
)
|
1001 |
return reordered_past
|
1002 |
|
1003 |
-
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
|
1004 |
prompt = ""
|
|
|
|
|
|
|
|
|
1005 |
for record in history:
|
1006 |
-
prompt += f"""
|
1007 |
-
prompt += f"""
|
1008 |
return tokenizer([prompt], return_tensors="pt")
|
1009 |
|
1010 |
@torch.no_grad()
|
@@ -1018,10 +1144,15 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1018 |
do_sample: bool = True,
|
1019 |
temperature: float = 0.8,
|
1020 |
top_p: float = 0.8,
|
|
|
|
|
|
|
1021 |
**kwargs,
|
1022 |
):
|
1023 |
-
inputs = self.build_inputs(tokenizer, query, history)
|
1024 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
|
|
|
|
1025 |
outputs = self.generate(
|
1026 |
**inputs,
|
1027 |
streamer=streamer,
|
@@ -1029,11 +1160,12 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1029 |
do_sample=do_sample,
|
1030 |
temperature=temperature,
|
1031 |
top_p=top_p,
|
|
|
1032 |
**kwargs,
|
1033 |
)
|
1034 |
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
1035 |
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1036 |
-
response = response.split("
|
1037 |
history = history + [(query, response)]
|
1038 |
return response, history
|
1039 |
|
@@ -1086,7 +1218,7 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1086 |
return
|
1087 |
|
1088 |
token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
|
1089 |
-
if token.strip() != "
|
1090 |
self.response = self.response + token
|
1091 |
history = self.history + [(self.query, self.response)]
|
1092 |
self.queue.put((self.response, history))
|
@@ -1119,11 +1251,14 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1119 |
return consumer()
|
1120 |
|
1121 |
|
|
|
1122 |
@add_start_docstrings(
|
1123 |
"""
|
1124 |
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
|
|
1125 |
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
1126 |
as other causal models (e.g. GPT-2) do.
|
|
|
1127 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1128 |
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1129 |
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
@@ -1236,4 +1371,4 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
|
1236 |
past_key_values=transformer_outputs.past_key_values,
|
1237 |
hidden_states=transformer_outputs.hidden_states,
|
1238 |
attentions=transformer_outputs.attentions,
|
1239 |
-
)
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
|
|
2 |
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
|
|
|
|
|
|
4 |
#
|
5 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
# you may not use this file except in compliance with the License.
|
|
|
21 |
from typing import List, Optional, Tuple, Union
|
22 |
|
23 |
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
import torch.utils.checkpoint
|
26 |
from einops import rearrange
|
27 |
from torch import nn
|
|
|
51 |
|
52 |
_CONFIG_FOR_DOC = "InternLM2Config"
|
53 |
|
54 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
55 |
+
def _get_unpad_data(attention_mask):
|
56 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
57 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
58 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
59 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
60 |
+
return (
|
61 |
+
indices,
|
62 |
+
cu_seqlens,
|
63 |
+
max_seqlen_in_batch,
|
64 |
+
)
|
65 |
+
|
66 |
|
67 |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
68 |
def _make_causal_mask(
|
|
|
97 |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
98 |
|
99 |
|
100 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
101 |
class InternLM2RMSNorm(nn.Module):
|
102 |
def __init__(self, hidden_size, eps=1e-6):
|
103 |
"""
|
|
|
115 |
return self.weight * hidden_states.to(input_dtype)
|
116 |
|
117 |
|
118 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
119 |
class InternLM2RotaryEmbedding(nn.Module):
|
120 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
121 |
super().__init__()
|
|
|
144 |
def forward(self, x, seq_len=None):
|
145 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
146 |
if seq_len > self.max_seq_len_cached:
|
147 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
148 |
|
149 |
return (
|
150 |
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
|
|
152 |
)
|
153 |
|
154 |
|
155 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
156 |
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
157 |
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
158 |
|
|
|
172 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
173 |
|
174 |
|
175 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
176 |
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
177 |
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
178 |
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
|
|
201 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
202 |
|
203 |
|
204 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
205 |
def rotate_half(x):
|
206 |
"""Rotates half the hidden dims of the input."""
|
207 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
209 |
return torch.cat((-x2, x1), dim=-1)
|
210 |
|
211 |
|
212 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
213 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
214 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
215 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
216 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
217 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
218 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
return q_embed, k_embed
|
220 |
|
221 |
|
|
|
236 |
return down_proj
|
237 |
|
238 |
|
239 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
240 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
241 |
"""
|
242 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
249 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
250 |
|
251 |
|
252 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
253 |
class InternLM2Attention(nn.Module):
|
254 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
255 |
|
|
|
280 |
self._init_rope()
|
281 |
|
282 |
def _init_rope(self):
|
283 |
+
if self.config.rope_scaling is None:
|
284 |
self.rotary_emb = InternLM2RotaryEmbedding(
|
285 |
self.head_dim,
|
286 |
max_position_embeddings=self.max_position_embeddings,
|
287 |
+
base=self.config.rope_theta,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
)
|
289 |
else:
|
290 |
+
scaling_type = self.config.rope_scaling["type"]
|
291 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
292 |
+
if scaling_type == "dynamic":
|
293 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
294 |
+
self.head_dim,
|
295 |
+
max_position_embeddings=self.max_position_embeddings,
|
296 |
+
base=self.config.rope_theta,
|
297 |
+
scaling_factor=scaling_factor,
|
298 |
+
)
|
299 |
+
elif scaling_type == "linear":
|
300 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
301 |
+
self.head_dim,
|
302 |
+
max_position_embeddings=self.max_position_embeddings,
|
303 |
+
base=self.config.rope_theta,
|
304 |
+
scaling_factor=scaling_factor,
|
305 |
+
)
|
306 |
+
else:
|
307 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
308 |
return self.rotary_emb
|
309 |
|
310 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
|
398 |
return attn_output, attn_weights, past_key_value
|
399 |
|
400 |
|
401 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
402 |
class InternLM2FlashAttention2(InternLM2Attention):
|
403 |
"""
|
404 |
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
|
|
435 |
qkv_states = rearrange(
|
436 |
qkv_states,
|
437 |
"b q (h gs d) -> b q h gs d",
|
438 |
+
gs=2 + self.num_key_value_groups,
|
439 |
d=self.head_dim,
|
|
|
440 |
)
|
441 |
|
442 |
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
|
|
444 |
key_states = qkv_states[..., -2, :]
|
445 |
value_states = qkv_states[..., -1, :]
|
446 |
|
447 |
+
query_states = query_states.transpose(1, 2)
|
448 |
+
key_states = key_states.transpose(1, 2)
|
449 |
+
value_states = value_states.transpose(1, 2)
|
450 |
+
|
451 |
kv_seq_len = key_states.shape[-2]
|
452 |
if past_key_value is not None:
|
453 |
kv_seq_len += past_key_value[0].shape[-2]
|
|
|
469 |
|
470 |
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
attn_output = self._flash_attention_forward(
|
473 |
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
474 |
)
|
|
|
475 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
476 |
attn_output = self.wo(attn_output)
|
477 |
|
|
|
480 |
|
481 |
return attn_output, attn_weights, past_key_value
|
482 |
|
483 |
+
def _flash_attention_forward(
|
484 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
485 |
+
):
|
486 |
+
"""
|
487 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
488 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
489 |
+
|
490 |
+
Args:
|
491 |
+
query_states (`torch.Tensor`):
|
492 |
+
Input query states to be passed to Flash Attention API
|
493 |
+
key_states (`torch.Tensor`):
|
494 |
+
Input key states to be passed to Flash Attention API
|
495 |
+
value_states (`torch.Tensor`):
|
496 |
+
Input value states to be passed to Flash Attention API
|
497 |
+
attention_mask (`torch.Tensor`):
|
498 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
499 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
500 |
+
dropout (`int`, *optional*):
|
501 |
+
Attention dropout
|
502 |
+
softmax_scale (`float`, *optional*):
|
503 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
504 |
+
"""
|
505 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
506 |
+
from flash_attn.bert_padding import pad_input
|
507 |
+
# Contains at least one padding token in the sequence
|
508 |
+
causal = self.is_causal and query_length != 1
|
509 |
+
if attention_mask is not None:
|
510 |
+
batch_size = query_states.shape[0]
|
511 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
512 |
+
query_states, key_states, value_states, attention_mask, query_length
|
513 |
+
)
|
514 |
+
|
515 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
516 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
517 |
+
|
518 |
+
attn_output_unpad = flash_attn_varlen_func(
|
519 |
+
query_states,
|
520 |
+
key_states,
|
521 |
+
value_states,
|
522 |
+
cu_seqlens_q=cu_seqlens_q,
|
523 |
+
cu_seqlens_k=cu_seqlens_k,
|
524 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
525 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
526 |
+
dropout_p=dropout,
|
527 |
+
softmax_scale=softmax_scale,
|
528 |
+
causal=causal,
|
529 |
+
)
|
530 |
+
|
531 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
532 |
+
else:
|
533 |
+
attn_output = flash_attn_func(
|
534 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
535 |
+
)
|
536 |
+
|
537 |
+
return attn_output
|
538 |
+
|
539 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
540 |
+
from flash_attn.bert_padding import index_first_axis, unpad_input
|
541 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
542 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
543 |
+
|
544 |
+
key_layer = index_first_axis(
|
545 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
546 |
+
)
|
547 |
+
value_layer = index_first_axis(
|
548 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
549 |
+
)
|
550 |
+
|
551 |
+
if query_length == kv_seq_len:
|
552 |
+
query_layer = index_first_axis(
|
553 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
554 |
+
)
|
555 |
+
cu_seqlens_q = cu_seqlens_k
|
556 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
557 |
+
indices_q = indices_k
|
558 |
+
elif query_length == 1:
|
559 |
+
max_seqlen_in_batch_q = 1
|
560 |
+
cu_seqlens_q = torch.arange(
|
561 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
562 |
+
) # There is a memcpy here, that is very bad.
|
563 |
+
indices_q = cu_seqlens_q[:-1]
|
564 |
+
query_layer = query_layer.squeeze(1)
|
565 |
+
else:
|
566 |
+
# The -q_len: slice assumes left padding.
|
567 |
+
attention_mask = attention_mask[:, -query_length:]
|
568 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
569 |
+
|
570 |
+
return (
|
571 |
+
query_layer,
|
572 |
+
key_layer,
|
573 |
+
value_layer,
|
574 |
+
indices_q.to(torch.int64),
|
575 |
+
(cu_seqlens_q, cu_seqlens_k),
|
576 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
577 |
+
)
|
578 |
+
|
579 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
580 |
+
"eager": InternLM2Attention,
|
581 |
+
"flash_attention_2": InternLM2FlashAttention2,
|
582 |
+
}
|
583 |
|
584 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
585 |
class InternLM2DecoderLayer(nn.Module):
|
586 |
def __init__(self, config: InternLM2Config):
|
587 |
super().__init__()
|
588 |
self.hidden_size = config.hidden_size
|
589 |
+
|
590 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
591 |
+
|
|
|
|
|
592 |
self.feed_forward = InternLM2MLP(config)
|
593 |
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
594 |
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
660 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
661 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
662 |
etc.)
|
663 |
+
|
664 |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
665 |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
666 |
and behavior.
|
667 |
+
|
668 |
Parameters:
|
669 |
config ([`InternLM2Config`]):
|
670 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
|
673 |
"""
|
674 |
|
675 |
|
676 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
677 |
@add_start_docstrings(
|
678 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
679 |
InternLM2_START_DOCSTRING,
|
|
|
684 |
supports_gradient_checkpointing = True
|
685 |
_no_split_modules = ["InternLM2DecoderLayer"]
|
686 |
_skip_keys_device_placement = "past_key_values"
|
|
|
687 |
|
688 |
def _init_weights(self, module):
|
689 |
std = self.config.initializer_range
|
|
|
702 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
703 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
704 |
it.
|
705 |
+
|
706 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
707 |
[`PreTrainedTokenizer.__call__`] for details.
|
708 |
+
|
709 |
[What are input IDs?](../glossary#input-ids)
|
710 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
711 |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
712 |
+
|
713 |
- 1 for tokens that are **not masked**,
|
714 |
- 0 for tokens that are **masked**.
|
715 |
+
|
716 |
[What are attention masks?](../glossary#attention-mask)
|
717 |
+
|
718 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
719 |
[`PreTrainedTokenizer.__call__`] for details.
|
720 |
+
|
721 |
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
722 |
`past_key_values`).
|
723 |
+
|
724 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
725 |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
726 |
information on the default strategy.
|
727 |
+
|
728 |
- 1 indicates the head is **not masked**,
|
729 |
- 0 indicates the head is **masked**.
|
730 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
731 |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
732 |
config.n_positions - 1]`.
|
733 |
+
|
734 |
[What are position IDs?](../glossary#position-ids)
|
735 |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
736 |
when `config.use_cache=True`):
|
737 |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
738 |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
739 |
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
740 |
+
|
741 |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
742 |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
743 |
+
|
744 |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
745 |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
746 |
of shape `(batch_size, sequence_length)`.
|
|
|
762 |
"""
|
763 |
|
764 |
|
765 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
766 |
@add_start_docstrings(
|
767 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
768 |
InternLM2_START_DOCSTRING,
|
|
|
770 |
class InternLM2Model(InternLM2PreTrainedModel):
|
771 |
"""
|
772 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
773 |
+
|
774 |
Args:
|
775 |
config: InternLM2Config
|
776 |
"""
|
|
|
781 |
super().__init__(config)
|
782 |
self.padding_idx = config.pad_token_id
|
783 |
self.vocab_size = config.vocab_size
|
784 |
+
self.config = config
|
785 |
|
786 |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
787 |
+
|
788 |
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
789 |
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
790 |
|
|
|
798 |
def set_input_embeddings(self, value):
|
799 |
self.tok_embeddings = value
|
800 |
|
|
|
801 |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
802 |
# create causal mask
|
803 |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
|
867 |
|
868 |
if inputs_embeds is None:
|
869 |
inputs_embeds = self.tok_embeddings(input_ids)
|
870 |
+
|
871 |
+
if self.config.attn_implementation == "flash_attention_2":
|
872 |
+
# 2d mask is passed through the layers
|
873 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
874 |
+
else:
|
875 |
+
if attention_mask is None:
|
876 |
+
attention_mask = torch.ones(
|
877 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
878 |
+
)
|
879 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
880 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
881 |
)
|
|
|
|
|
|
|
882 |
|
883 |
# embed positions
|
884 |
hidden_states = inputs_embeds
|
|
|
952 |
)
|
953 |
|
954 |
|
955 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
956 |
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
957 |
_auto_class = "AutoModelForCausalLM"
|
958 |
|
|
|
1006 |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1007 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1008 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1009 |
+
|
1010 |
Returns:
|
1011 |
+
|
1012 |
Example:
|
1013 |
+
|
1014 |
```python
|
1015 |
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1016 |
+
|
1017 |
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1018 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1019 |
+
|
1020 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1021 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1022 |
+
|
1023 |
>>> # Generate
|
1024 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1025 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
1122 |
)
|
1123 |
return reordered_past
|
1124 |
|
1125 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
|
1126 |
prompt = ""
|
1127 |
+
if meta_instruction:
|
1128 |
+
prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
|
1129 |
+
else:
|
1130 |
+
prompt += "<s>"
|
1131 |
for record in history:
|
1132 |
+
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
|
1133 |
+
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
|
1134 |
return tokenizer([prompt], return_tensors="pt")
|
1135 |
|
1136 |
@torch.no_grad()
|
|
|
1144 |
do_sample: bool = True,
|
1145 |
temperature: float = 0.8,
|
1146 |
top_p: float = 0.8,
|
1147 |
+
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
1148 |
+
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
1149 |
+
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
|
1150 |
**kwargs,
|
1151 |
):
|
1152 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1153 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1154 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1155 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["[UNUSED_TOKEN_145]"])[0]]
|
1156 |
outputs = self.generate(
|
1157 |
**inputs,
|
1158 |
streamer=streamer,
|
|
|
1160 |
do_sample=do_sample,
|
1161 |
temperature=temperature,
|
1162 |
top_p=top_p,
|
1163 |
+
eos_token_id=eos_token_id,
|
1164 |
**kwargs,
|
1165 |
)
|
1166 |
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
1167 |
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1168 |
+
response = response.split("[UNUSED_TOKEN_145]")[0]
|
1169 |
history = history + [(query, response)]
|
1170 |
return response, history
|
1171 |
|
|
|
1218 |
return
|
1219 |
|
1220 |
token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
|
1221 |
+
if token.strip() != "[UNUSED_TOKEN_145]":
|
1222 |
self.response = self.response + token
|
1223 |
history = self.history + [(self.query, self.response)]
|
1224 |
self.queue.put((self.response, history))
|
|
|
1251 |
return consumer()
|
1252 |
|
1253 |
|
1254 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1255 |
@add_start_docstrings(
|
1256 |
"""
|
1257 |
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
1258 |
+
|
1259 |
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
1260 |
as other causal models (e.g. GPT-2) do.
|
1261 |
+
|
1262 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1263 |
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1264 |
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
|
1371 |
past_key_values=transformer_outputs.past_key_values,
|
1372 |
hidden_states=transformer_outputs.hidden_states,
|
1373 |
attentions=transformer_outputs.attentions,
|
1374 |
+
)
|