File size: 7,720 Bytes
60ff3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# coding=utf-8
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tokenization Fast class for InternLM."""
import os
from shutil import copyfile
from typing import Any, Dict, Optional, Tuple

from tokenizers import processors, decoders, Tokenizer, normalizers
from tokenizers.models import BPE

from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging

from transformers.convert_slow_tokenizer import (
    SLOW_TO_FAST_CONVERTERS,
    SpmConverter,
    SentencePieceExtractor,
)

from .tokenization_internlm2 import InternLM2Tokenizer

logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}

# Modified from transformers.convert_slow_tokenizer.LlamaConverter
class InternLM2Converter(SpmConverter):
    handle_byte_fallback = True

    def vocab(self, proto):
        vocab = [
            ("<unk>", 0.0),
            ("<s>", 0.0),
            ("</s>", 0.0),
        ]
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
        return vocab

    def unk_id(self, proto):
        unk_id = 0
        return unk_id

    def decoder(self, replacement, add_prefix_space):
        return decoders.Sequence(
            [
                decoders.Replace("▁", " "),
                decoders.ByteFallback(),
                decoders.Fuse(),
                decoders.Strip(content=" ", left=1),
            ]
        )

    def tokenizer(self, proto):
        model_type = proto.trainer_spec.model_type
        vocab_scores = self.vocab(proto)
        # special tokens
        added_tokens = self.original_tokenizer.added_tokens_decoder
        for i in range(len(vocab_scores)):
            piece, score = vocab_scores[i]
            if i in added_tokens:
                vocab_scores[i] = (added_tokens[i].content, score)
        if model_type == 1:
            raise RuntimeError("InternLM2 is supposed to be a BPE model!")

        elif model_type == 2:
            _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
            bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
            tokenizer = Tokenizer(
                BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
            )
            tokenizer.add_special_tokens(
                [ added_token for index, added_token in added_tokens.items()]
            )
        else:
            raise Exception(
                "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
            )

        return tokenizer

    def normalizer(self, proto):
        normalizers_list = []
        if proto.normalizer_spec.add_dummy_prefix:
            normalizers_list.append(normalizers.Prepend(prepend="▁"))
        normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
        return normalizers.Sequence(normalizers_list)

    def pre_tokenizer(self, replacement, add_prefix_space):
        return None

SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter


# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
    vocab_files_names = VOCAB_FILES_NAMES
    slow_tokenizer_class = InternLM2Tokenizer
    padding_side = "left"
    model_input_names = ["input_ids", "attention_mask"]
    _auto_class = "AutoTokenizer"

    def __init__(
        self,
        vocab_file,
        unk_token="<unk>",
        bos_token="<s>",
        eos_token="</s>",
        pad_token="</s>",
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
        add_bos_token=True,
        add_eos_token=False,
        decode_with_prefix_space=False,
        clean_up_tokenization_spaces=False,
        **kwargs,
    ):
        super().__init__(
            vocab_file=vocab_file,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            pad_token=pad_token,
            sp_model_kwargs=sp_model_kwargs,
            add_bos_token=add_bos_token,
            add_eos_token=add_eos_token,
            decode_with_prefix_space=decode_with_prefix_space,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )
        self._add_bos_token = add_bos_token
        self._add_eos_token = add_eos_token
        self.update_post_processor()
        self.vocab_file = vocab_file

    @property
    def can_save_slow_tokenizer(self) -> bool:
        return os.path.isfile(self.vocab_file) if self.vocab_file else False

    def update_post_processor(self):
        """
        Updates the underlying post processor with the current `bos_token` and `eos_token`.
        """
        bos = self.bos_token
        bos_token_id = self.bos_token_id
        if bos is None and self.add_bos_token:
            raise ValueError("add_bos_token = True but bos_token = None")

        eos = self.eos_token
        eos_token_id = self.eos_token_id
        if eos is None and self.add_eos_token:
            raise ValueError("add_eos_token = True but eos_token = None")

        single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
        pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"

        special_tokens = []
        if self.add_bos_token:
            special_tokens.append((bos, bos_token_id))
        if self.add_eos_token:
            special_tokens.append((eos, eos_token_id))
        self._tokenizer.post_processor = processors.TemplateProcessing(
            single=single, pair=pair, special_tokens=special_tokens
        )

    @property
    def add_eos_token(self):
        return self._add_eos_token

    @property
    def add_bos_token(self):
        return self._add_bos_token

    @add_eos_token.setter
    def add_eos_token(self, value):
        self._add_eos_token = value
        self.update_post_processor()

    @add_bos_token.setter
    def add_bos_token(self, value):
        self._add_bos_token = value
        self.update_post_processor()

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if not self.can_save_slow_tokenizer:
            raise ValueError(
                "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
                "tokenizer."
            )

        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return
        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
            copyfile(self.vocab_file, out_vocab_file)

        return (out_vocab_file,)