InternLM-Math
commited on
Delete configuration_internlm.py
Browse files- configuration_internlm.py +0 -159
configuration_internlm.py
DELETED
@@ -1,159 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright (c) InternLM. All rights reserved.
|
3 |
-
#
|
4 |
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
-
#
|
9 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
-
# you may not use this file except in compliance with the License.
|
11 |
-
# You may obtain a copy of the License at
|
12 |
-
#
|
13 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
-
#
|
15 |
-
# Unless required by applicable law or agreed to in writing, software
|
16 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
-
# See the License for the specific language governing permissions and
|
19 |
-
# limitations under the License.
|
20 |
-
""" InternLM model configuration"""
|
21 |
-
|
22 |
-
from transformers.configuration_utils import PretrainedConfig
|
23 |
-
from transformers.utils import logging
|
24 |
-
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
-
|
27 |
-
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
28 |
-
|
29 |
-
|
30 |
-
class InternLMConfig(PretrainedConfig):
|
31 |
-
r"""
|
32 |
-
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
33 |
-
an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
-
configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
|
35 |
-
|
36 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
-
documentation from [`PretrainedConfig`] for more information.
|
38 |
-
|
39 |
-
|
40 |
-
Args:
|
41 |
-
vocab_size (`int`, *optional*, defaults to 32000):
|
42 |
-
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
|
43 |
-
`inputs_ids` passed when calling [`InternLMModel`]
|
44 |
-
hidden_size (`int`, *optional*, defaults to 4096):
|
45 |
-
Dimension of the hidden representations.
|
46 |
-
intermediate_size (`int`, *optional*, defaults to 11008):
|
47 |
-
Dimension of the MLP representations.
|
48 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
49 |
-
Number of hidden layers in the Transformer encoder.
|
50 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
-
num_key_value_heads (`int`, *optional*):
|
53 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
-
`num_attention_heads`.
|
60 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
61 |
-
The non-linear activation function (function or string) in the decoder.
|
62 |
-
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
63 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
64 |
-
just in case (e.g., 512 or 1024 or 2048).
|
65 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
-
The epsilon used by the rms normalization layers.
|
69 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
70 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
71 |
-
relevant if `config.is_decoder=True`.
|
72 |
-
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
73 |
-
Whether to tie weight embeddings
|
74 |
-
Example:
|
75 |
-
|
76 |
-
```python
|
77 |
-
>>> from transformers import InternLMModel, InternLMConfig
|
78 |
-
|
79 |
-
>>> # Initializing a InternLM internlm-7b style configuration
|
80 |
-
>>> configuration = InternLMConfig()
|
81 |
-
|
82 |
-
>>> # Initializing a model from the internlm-7b style configuration
|
83 |
-
>>> model = InternLMModel(configuration)
|
84 |
-
|
85 |
-
>>> # Accessing the model configuration
|
86 |
-
>>> configuration = model.config
|
87 |
-
```"""
|
88 |
-
model_type = "internlm"
|
89 |
-
_auto_class = "AutoConfig"
|
90 |
-
|
91 |
-
def __init__( # pylint: disable=W0102
|
92 |
-
self,
|
93 |
-
vocab_size=103168,
|
94 |
-
hidden_size=4096,
|
95 |
-
intermediate_size=11008,
|
96 |
-
num_hidden_layers=32,
|
97 |
-
num_attention_heads=32,
|
98 |
-
num_key_value_heads=None,
|
99 |
-
hidden_act="silu",
|
100 |
-
max_position_embeddings=2048,
|
101 |
-
initializer_range=0.02,
|
102 |
-
rms_norm_eps=1e-6,
|
103 |
-
use_cache=True,
|
104 |
-
pad_token_id=0,
|
105 |
-
bos_token_id=1,
|
106 |
-
eos_token_id=2,
|
107 |
-
tie_word_embeddings=False,
|
108 |
-
bias=True,
|
109 |
-
rope_theta=10000,
|
110 |
-
rope_scaling=None,
|
111 |
-
**kwargs,
|
112 |
-
):
|
113 |
-
self.vocab_size = vocab_size
|
114 |
-
self.max_position_embeddings = max_position_embeddings
|
115 |
-
self.hidden_size = hidden_size
|
116 |
-
self.intermediate_size = intermediate_size
|
117 |
-
self.num_hidden_layers = num_hidden_layers
|
118 |
-
self.num_attention_heads = num_attention_heads
|
119 |
-
self.bias = bias
|
120 |
-
|
121 |
-
if num_key_value_heads is None:
|
122 |
-
num_key_value_heads = num_attention_heads
|
123 |
-
self.num_key_value_heads = num_key_value_heads
|
124 |
-
|
125 |
-
self.hidden_act = hidden_act
|
126 |
-
self.initializer_range = initializer_range
|
127 |
-
self.rms_norm_eps = rms_norm_eps
|
128 |
-
self.use_cache = use_cache
|
129 |
-
self.rope_theta = rope_theta
|
130 |
-
self.rope_scaling = rope_scaling
|
131 |
-
self._rope_scaling_validation()
|
132 |
-
super().__init__(
|
133 |
-
pad_token_id=pad_token_id,
|
134 |
-
bos_token_id=bos_token_id,
|
135 |
-
eos_token_id=eos_token_id,
|
136 |
-
tie_word_embeddings=tie_word_embeddings,
|
137 |
-
**kwargs,
|
138 |
-
)
|
139 |
-
|
140 |
-
def _rope_scaling_validation(self):
|
141 |
-
"""
|
142 |
-
Validate the `rope_scaling` configuration.
|
143 |
-
"""
|
144 |
-
if self.rope_scaling is None:
|
145 |
-
return
|
146 |
-
|
147 |
-
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
148 |
-
raise ValueError(
|
149 |
-
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
150 |
-
f"got {self.rope_scaling}"
|
151 |
-
)
|
152 |
-
rope_scaling_type = self.rope_scaling.get("type", None)
|
153 |
-
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
154 |
-
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
155 |
-
raise ValueError(
|
156 |
-
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
157 |
-
)
|
158 |
-
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
159 |
-
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|