--- language: - en - fr - de - es - it - pt - ru - zh - ja license: apache-2.0 model-index: - name: mini-magnum-12b-v1.1 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 51.56 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=intervitens/mini-magnum-12b-v1.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 29.73 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=intervitens/mini-magnum-12b-v1.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 3.7 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=intervitens/mini-magnum-12b-v1.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 5.15 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=intervitens/mini-magnum-12b-v1.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.09 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=intervitens/mini-magnum-12b-v1.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 25.46 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=intervitens/mini-magnum-12b-v1.1 name: Open LLM Leaderboard --- ![](mini-magnum.png) This model is the miniature version of [alpindale/magnum-72b-v1](https://huggingface.co/alpindale/magnum-72b-v1), a second entry in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407). A new general purpose instruction dataset by kalomaze was added to the training mix for better coherence and general alignment. We are working on improving our dataset and training procedures, so expect new versions to come out soon. ## Prompting Model has been Instruct tuned with the Mistral formatting. A typical input would look like this: ```py """[INST] Hi there! [/INST]Nice to meet you![INST] Can I ask a question? [/INST] """ ``` ## Credits This model has been a team effort, credits go to: - [Sao10K](https://huggingface.co/Sao10K) and [kalomaze](https://huggingface.co/kalomaze) for help with (and cleaning up!) the dataset. - [alpindale](https://huggingface.co/alpindale) for the training. - Various other people for their continued help as we tuned the parameters, restarted failed runs. In no particular order: [Doctor Shotgun](https://huggingface.co/Doctor-Shotgun), [Lucy](https://huggingface.co/lucyknada), [Nopm](https://huggingface.co/nopm), [Mango](https://huggingface.co/MangoMango69420), [Intervitens](https://huggingface.co/intervitens), and the rest of the Silly Tilly. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ... # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_intervitens__mini-magnum-12b-v1.1) | Metric |Value| |-------------------|----:| |Avg. |20.61| |IFEval (0-Shot) |51.56| |BBH (3-Shot) |29.73| |MATH Lvl 5 (4-Shot)| 3.70| |GPQA (0-shot) | 5.15| |MuSR (0-shot) | 8.09| |MMLU-PRO (5-shot) |25.46|