--- tags: - mmeb - transformers language: - en - ar - zh - ko - ru - pl - tr - fr license: mit --- ## mmE5-mllama-11b-instruct [mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data](https://arxiv.org/abs/2502.08468.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024 This model is trained based on [Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision). [Github](https://github.com/haon-chen/mmE5) ## Train/Eval Data - Train data: https://huggingface.co/datasets/intfloat/mmE5-MMEB-hardneg, https://huggingface.co/datasets/intfloat/mmE5-synthetic - Eval data: https://huggingface.co/datasets/TIGER-Lab/MMEB-eval, https://huggingface.co/datasets/Haon-Chen/XTD-10 ## Experimental Results Our model achieves SOTA performance on MMEB benchmark. abs ## Usage Below is an example we adapted from [VLM2Vec](https://huggingface.co/TIGER-Lab/VLM2Vec-Full). First clone github ```bash git clone https://github.com/haon-chen/mmE5.git pip install -r requirements.txt ``` Then you can enter the directory to run the following command. ```python from transformers import MllamaForConditionalGeneration, AutoProcessor, AutoConfig import torch from PIL import Image # Pooling and Normalization def last_pooling(last_hidden_state, attention_mask, normalize=True): sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_state.shape[0] reps = last_hidden_state[torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths] if normalize: reps = torch.nn.functional.normalize(reps, p=2, dim=-1) return reps def compute_similarity(q_reps, p_reps): return torch.matmul(q_reps, p_reps.transpose(0, 1)) model_name = "intfloat/mmE5-mllama-11b-instruct" # Load Processor and Model processor = AutoProcessor.from_pretrained(model_name) processor.tokenizer.padding_side = "right" config = AutoConfig.from_pretrained(model_name) if hasattr(config, 'use_cache'): config.use_cache = False config.padding_side = "right" model = MllamaForConditionalGeneration.from_pretrained( model_name, config=config, torch_dtype=torch.bfloat16 ).to("cuda") model.padding_side = "right" model.eval() # Image + Text -> Text inputs = processor(text='<|image|><|begin_of_text|> Represent the given image with the following question: What is in the image', images=[Image.open( 'figures/example.jpg')], return_tensors="pt").to("cuda") qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask']) string = 'A cat and a dog' text_inputs = processor(text=string, return_tensors="pt").to("cuda") tgt_output = last_pooling(model(**text_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], text_inputs['attention_mask']) print(string, '=', compute_similarity(qry_output, tgt_output)) ## A cat and a dog = tensor([[0.3965]], device='cuda:0', dtype=torch.bfloat16) string = 'A cat and a tiger' text_inputs = processor(text=string, return_tensors="pt").to("cuda") tgt_output = last_pooling(model(**text_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], text_inputs['attention_mask']) print(string, '=', compute_similarity(qry_output, tgt_output)) ## A cat and a tiger = tensor([[0.3105]], device='cuda:0', dtype=torch.bfloat16) # Text -> Image inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a dog.', return_tensors="pt").to("cuda") qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask']) string = '<|image|><|begin_of_text|> Represent the given image.' tgt_inputs = processor(text=string, images=[Image.open('figures/example.jpg')], return_tensors="pt").to("cuda") tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask']) print(string, '=', compute_similarity(qry_output, tgt_output)) ## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.4219]], device='cuda:0', dtype=torch.bfloat16) inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a tiger.', return_tensors="pt").to("cuda") qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask']) string = '<|image|><|begin_of_text|> Represent the given image.' tgt_inputs = processor(text=string, images=[Image.open('figures/example.jpg')], return_tensors="pt").to("cuda") tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask']) print(string, '=', compute_similarity(qry_output, tgt_output)) ## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16) ``` ## Citation ``` @article{chen2025mmE5, title={mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data}, author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng}, journal={arXiv preprint arXiv:2502.08468}, year={2025} } ```