import numpy as np import torch as t import torch.nn.functional as F from einops import rearrange # TODO: Add functionality to load this from a config file as an alternative to command-line args. class OsSoluConfig: """A class to hold hyperparameters for the model itself and for the training process.""" batch_size: int # Training data batch size. checkpoint_every_n_tokens: int # Save a checkpoint of the model every n tokens processed. d_model: int # Hidden size of the model. dropout: float # Probability of dropout. learning_rate: float # Learning rate for the optimiser. ln_eps: float # Layer norm epsilon. max_positional_embeddings: int # Maximum number of positional embeddings. nonlinearity: str # Nonlinearity to use inside MLP block: must be ReLU or SoLU. num_blocks: int # Number of transformer blocks. num_embeddings: int # Number of embeddings. Unsure about this. num_epochs: int # Number of epochs for this run. num_heads: int # Number of attention heads in each attention layer. self_attention_type: str # What type of attention to use: rotary or unidirectional. optimiser_type: str # Optimiser type: SGD, Adam. vocab_size: int # Vocabulary size of the input sequence. Unsure about this. def __init__(self, args: dict) -> None: """Initialise this config class with values provided by a command-line argument parser. Values are never None here, as we provide suitable defaults in the parser call.""" self.batch_size = args["batch_size"] self.checkpoint_every_n_tokens = args["checkpoint_every_n_tokens"] self.d_model = args["d_model"] self.dropout = args["dropout"] self.learning_rate = args["learning_rate"] self.ln_eps = args["ln_eps"] self.max_positional_embeddings = args["max_positional_embeddings"] self.nonlinearity = args["nonlinearity"] self.num_blocks = args["num_blocks"] self.num_embeddings = args["num_embeddings"] self.num_epochs = args["num_epochs"] self.num_heads = args["num_heads"] self.optimiser_type = args["optimiser_type"] self.self_attention_type = args["self_attention_type"] self.vocab_size = args["vocab_size"] def tokenise(batch, tokeniser, num_gpus: int, context_length: int): """Tokenise a batch of text data. This implementation is idiosyncratic to the Pile dataset, but can be easily modified to work with e.g. C4. Code from Neel. Args: batch (dict): The batch of text, as a dict with a 'text' field. tokeniser (-): A huggingface-API tokeniser, of type returned by AutoTokenizer.from_pretrained (depends on model chosen). num_gpus (int, optional): The number of GPUs available for data parallel training. Defaults to 1. context_length (int, optional): The context length of the model that will be trained on this data. Defaults to 1024. Returns: dict: A single field dictionary, 'text', whose value is a tensor of shape (batch_size, sequence_length) containing tokenised sequences. """ batch = batch["text"] full_text = tokeniser.eos_token.join(batch) # Divide entire batch among all GPUs available. seq_len = len(full_text)//num_gpus sequence_list = [full_text[i*seq_len:(i+1)*seq_len] for i in range(num_gpus)] # Tokenise sequences, removing padding tokens. all_tokens = tokeniser(sequence_list, return_tensors="pt", padding=True)["input_ids"].flatten() all_tokens = all_tokens[all_tokens != tokeniser.pad_token_id] # Reshape all_tokens to be (batch_size x sequence_length) where each sequence has # a "beginning of sequence" token prepended to it. num_tokens = len(all_tokens) current_batch_size = num_tokens // (context_length-1) all_tokens = all_tokens[:(context_length-1)*current_batch_size] all_tokens = rearrange(all_tokens, "(batch_size seq_len) -> batch_size seq_len", batch_size=current_batch_size, seq_len=context_length-1) prefix = np.full((current_batch_size, 1), tokeniser.bos_token_id, dtype=np.int64) tokenised_text = np.concatenate([prefix, all_tokens], axis=1) assert tokenised_text.shape == (current_batch_size, context_length) return {"text": tokenised_text} def loss_fn(logits, batch): """Loss function to train an autoregressive model. It compares the token logits predicted by the model with the actual next token. Code from Neel. Args: logits (t.Tensor): A tensor containing logits, has shape (batch_size, sequence_length, vocab_size) batch (t.Tensor): A tensor containing token IDs, has shape (batch_size, sequence_length, vocab_size) Returns: loss (t.Tensor): A tensor containing the loss value. """ # Log-softmax to get log-probabilities. log_probs = F.log_softmax(logits[:, :-1], dim=-1) # Match up the probabilities of the actual words. pred_log_probs = t.gather(log_probs, -1, batch[:, 1:, None])[..., 0] return -pred_log_probs.mean() def count_parameters(model): return sum(parameter.numel() for parameter in model.parameters() if parameter.requires_grad)