File size: 1,911 Bytes
45b8d3f
b91c415
b0e9012
45b8d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
41a5ea1
45b8d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a5ea1
45b8d3f
 
 
 
 
 
41a5ea1
 
 
 
 
 
 
 
 
 
45b8d3f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: Finetuned_speecht5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Finetuned_speecht5

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5028

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.6106        | 8.8496  | 500  | 0.5241          |
| 0.5243        | 17.6991 | 1000 | 0.4949          |
| 0.5004        | 26.5487 | 1500 | 0.4873          |
| 0.4918        | 35.3982 | 2000 | 0.4871          |
| 0.4927        | 44.2478 | 2500 | 0.4922          |
| 0.4715        | 53.0973 | 3000 | 0.4964          |
| 0.4832        | 61.9469 | 3500 | 0.4996          |
| 0.4744        | 70.7965 | 4000 | 0.5028          |
| 0.4677        | 79.6460 | 4500 | 0.5046          |
| 0.4568        | 88.4956 | 5000 | 0.5028          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1