Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +835 -3
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,5 +1,837 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:56041
|
11 |
+
- loss:MatryoshkaLoss
|
12 |
+
- loss:MultipleNegativesRankingLoss
|
13 |
+
base_model: BAAI/bge-base-en-v1.5
|
14 |
+
widget:
|
15 |
+
- source_sentence: What is the significance of the tables 6.1.6.2.5-1 and 6.1.6.2.6-1
|
16 |
+
in the context of the Namf_Communication Service API?
|
17 |
+
sentences:
|
18 |
+
- The 'notifId' attribute in the PolicyDataSubscription type serves as a Notification
|
19 |
+
Correlation ID assigned by the NF service consumer. It is included when the 'ConditionalSubscriptionwithPartialNotification'
|
20 |
+
or the 'ConditionalSubscriptionWithExcludeNotification' feature is supported.
|
21 |
+
This ID is used to correlate notifications with the specific subscription request,
|
22 |
+
ensuring that the NF service consumer can track and manage notifications effectively.
|
23 |
+
- The 'sessRuleReports' attribute in the 'ErrorReport' type is specifically used
|
24 |
+
to report failures related to session rules, whereas the 'ruleReports' attribute
|
25 |
+
reports failures related to PCC rules. 'sessRuleReports' contains an array of
|
26 |
+
'SessionRuleReport' objects, which provide details about the session rule failures.
|
27 |
+
Like 'ruleReports', it is optional and can have one or more entries (cardinality
|
28 |
+
1..N).
|
29 |
+
- Tables 6.1.6.2.5-1 and 6.1.6.2.6-1 are significant in the Namf_Communication Service
|
30 |
+
API as they provide the definitions for the types 'AssignEbiData' and 'AssignedEbiData',
|
31 |
+
respectively. These tables outline the structure, attributes, and possibly the
|
32 |
+
constraints or rules associated with these data types, which are essential for
|
33 |
+
understanding and implementing the API's functionality related to EBI assignment
|
34 |
+
and management.
|
35 |
+
- source_sentence: What document defines the basic principles for online charging,
|
36 |
+
and where is this information referenced?
|
37 |
+
sentences:
|
38 |
+
- The UDM (Unified Data Management) returns the Ranging and Sidelink Positioning
|
39 |
+
Subscription Data for the UE (User Equipment) identified by the supi (Subscription
|
40 |
+
Permanent Identifier). This data is retrieved using the GET method, which supports
|
41 |
+
the URI query parameters outlined in table 6.1.3.37.3.1-1.
|
42 |
+
- The Nsmf_PDUSession_SMContextStatusNotify service operation is used by the SMF
|
43 |
+
(Session Management Function) to notify its consumers about the status of an SM
|
44 |
+
(Session Management) context related to a PDU (Packet Data Unit) Session. In the
|
45 |
+
context of I-SMF (Intermediate SMF) context transfer, this service operation is
|
46 |
+
used to indicate the transfer of the SM context to a new I-SMF or SMF set. It
|
47 |
+
also allows the SMF to update the SMF-derived CN (Core Network) assisted RAN (Radio
|
48 |
+
Access Network) parameters tuning in the AMF (Access and Mobility Management Function).
|
49 |
+
Additionally, it can report DDN (Downlink Data Notification) failures and provide
|
50 |
+
target DNAI (Data Network Access Identifier) information for the current or next
|
51 |
+
PDU session.
|
52 |
+
- The basic principles for online charging are defined in TS 32.240 [1]. This information
|
53 |
+
is referenced in section 5.2.1 of the document, which is part of the '5.2 Online
|
54 |
+
charging scenario' chapter.
|
55 |
+
- source_sentence: What are the possible values for the 'ReportingLevel' enumeration,
|
56 |
+
and what do they indicate?
|
57 |
+
sentences:
|
58 |
+
- If protected User Plane (UP) messages reach the SN before the SN has received
|
59 |
+
the SN Counter value in the SN Reconfiguration Complete message, the SN chooses
|
60 |
+
the first unused KSN key of the UE to establish the security association. This
|
61 |
+
ensures that communication can proceed securely even if the SN Counter value has
|
62 |
+
not yet been received. Once the SN Counter value is received, the SN verifies
|
63 |
+
it to ensure there is no KSN mismatch.
|
64 |
+
- 'The ''ReportingLevel'' enumeration has three possible values: ''SER_ID_LEVEL'',
|
65 |
+
''RAT_GR_LEVEL'', and ''SPON_CON_LEVEL''. ''SER_ID_LEVEL'' indicates that usage
|
66 |
+
should be reported at the service ID and rating group combination level. ''RAT_GR_LEVEL''
|
67 |
+
indicates that usage should be reported at the rating group level. ''SPON_CON_LEVEL''
|
68 |
+
indicates that usage should be reported at the sponsor identity and rating group
|
69 |
+
combination level. These levels help in categorizing and reporting usage data
|
70 |
+
based on different granularities.'
|
71 |
+
- Structured data types in the Nudr_GroupIDmap Service API are more complex than
|
72 |
+
simple data types. While simple data types represent single values like integers
|
73 |
+
or strings, structured data types are composed of multiple simple data types or
|
74 |
+
other structured data types, forming a more complex data structure. For example,
|
75 |
+
a structured data type might represent a user profile containing fields for name,
|
76 |
+
age, and address, each of which could be a simple data type. This allows for the
|
77 |
+
representation of more intricate and hierarchical data within the API.
|
78 |
+
- source_sentence: What is the purpose of the Intermediate Spending Limit Report Request
|
79 |
+
procedure described in the document?
|
80 |
+
sentences:
|
81 |
+
- The Resource URI variables defined in table 6.1.3.8.2-1 for the 'sm-data' resource
|
82 |
+
serve to dynamically construct the URI based on specific parameters. These variables
|
83 |
+
include {apiRoot}, <apiVersion>, and {supi}. The {apiRoot} variable specifies
|
84 |
+
the base URL of the API, <apiVersion> indicates the version of the API to be used,
|
85 |
+
and {supi} represents the Subscription Permanent Identifier, which is used to
|
86 |
+
uniquely identify the subscriber. These variables ensure that the URI is correctly
|
87 |
+
formatted and points to the appropriate resource for the given subscriber and
|
88 |
+
API version.
|
89 |
+
- The purpose of the Intermediate Spending Limit Report Request procedure is to
|
90 |
+
allow the PCF (Policy Control Function) to request the status of additional policy
|
91 |
+
counters available at the CHF (Charging Function) or to remove the request for
|
92 |
+
the status of policy counters. The PCF can modify the list of subscribed policy
|
93 |
+
counters based on its policy decisions, and the CHF responds by providing the
|
94 |
+
policy counter status, optionally including pending statuses and their activation
|
95 |
+
times, for the requested policy counters.
|
96 |
+
- When ABC online charging is employed, the TDF uses Debit / Reserve Units Request[Initial],
|
97 |
+
update, or termination to convey charging information related to the detected
|
98 |
+
application traffic. The OCS responds with Debit / Reserve Units Response, which
|
99 |
+
includes quotas for rating groups or instructions on handling the application
|
100 |
+
traffic (e.g., terminate, continue, reroute). The TDF must request a quota before
|
101 |
+
service delivery. If only certain quotas are authorized by the OCS (e.g., due
|
102 |
+
to insufficient credit), the rating groups without authorized quotas are handled
|
103 |
+
according to the received Result Code value. The quota supervision mechanism is
|
104 |
+
further described in TS 32.299 [50].
|
105 |
+
- source_sentence: What types of data structures are supported by the GET request
|
106 |
+
body on the resource described in table 5.2.11.3.4-2, and how do they influence
|
107 |
+
the request?
|
108 |
+
sentences:
|
109 |
+
- In Direct Communication mode, the NF Service consumer can subscribe to status
|
110 |
+
change notifications of NF instances from the NRF. If the NF Service consumer
|
111 |
+
is notified by the NRF or detects by itself (e.g., through a lack of response
|
112 |
+
to a request) that the NF producer instance is no longer available, it selects
|
113 |
+
another available NF producer instance within the same NF Set. In Indirect Communication
|
114 |
+
mode, the SCP or NF Service consumer may also subscribe to status change notifications
|
115 |
+
from the NRF and select another NF producer instance within the same NF Set if
|
116 |
+
the original instance serving the UE becomes unavailable. The specific implementation
|
117 |
+
details of how the SCP detects the unavailability of an NF producer instance are
|
118 |
+
left to the implementation.
|
119 |
+
- The data structures supported by the GET request body on the resource are detailed
|
120 |
+
in table 5.2.11.3.4-2. These structures define the format and content of the data
|
121 |
+
that can be sent in the request body. They might include fields such as 'filterCriteria',
|
122 |
+
'sortOrder', or 'pagination', which influence how the server processes the request
|
123 |
+
and returns the appropriate data.
|
124 |
+
- 'The specific triggers on the Ro interface that can lead to the termination of
|
125 |
+
the IMS service include: 1) Reception of an unsuccessful Operation Result different
|
126 |
+
from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE in the Debit/Reserve Units Response
|
127 |
+
message. 2) Reception of an unsuccessful Result Code different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE
|
128 |
+
within the multiple units operation in the Debit/Reserve Units Response message
|
129 |
+
when only one instance of the multiple units operation field is used. 3) Execution
|
130 |
+
of the termination action procedure as defined in TS 32.299 when only one instance
|
131 |
+
of the Multiple Unit Operation field is used. 4) Execution of the failure handling
|
132 |
+
procedures when the Failure Action is set to ''Terminate'' or ''Retry & Terminate''.
|
133 |
+
5) Reception in the IMS-GWF of an Abort-Session-Request message from OCS.'
|
134 |
+
pipeline_tag: sentence-similarity
|
135 |
+
library_name: sentence-transformers
|
136 |
+
metrics:
|
137 |
+
- cosine_accuracy@1
|
138 |
+
- cosine_accuracy@3
|
139 |
+
- cosine_accuracy@5
|
140 |
+
- cosine_accuracy@10
|
141 |
+
- cosine_precision@1
|
142 |
+
- cosine_precision@3
|
143 |
+
- cosine_precision@5
|
144 |
+
- cosine_precision@10
|
145 |
+
- cosine_recall@1
|
146 |
+
- cosine_recall@3
|
147 |
+
- cosine_recall@5
|
148 |
+
- cosine_recall@10
|
149 |
+
- cosine_ndcg@10
|
150 |
+
- cosine_mrr@10
|
151 |
+
- cosine_map@100
|
152 |
+
model-index:
|
153 |
+
- name: BGE_base_3gpp-qa-v2_Matryoshka
|
154 |
+
results:
|
155 |
+
- task:
|
156 |
+
type: information-retrieval
|
157 |
+
name: Information Retrieval
|
158 |
+
dataset:
|
159 |
+
name: dim 768
|
160 |
+
type: dim_768
|
161 |
+
metrics:
|
162 |
+
- type: cosine_accuracy@1
|
163 |
+
value: 0.8347103013864849
|
164 |
+
name: Cosine Accuracy@1
|
165 |
+
- type: cosine_accuracy@3
|
166 |
+
value: 0.9628129405256866
|
167 |
+
name: Cosine Accuracy@3
|
168 |
+
- type: cosine_accuracy@5
|
169 |
+
value: 0.9806391748898128
|
170 |
+
name: Cosine Accuracy@5
|
171 |
+
- type: cosine_accuracy@10
|
172 |
+
value: 0.9927196159954319
|
173 |
+
name: Cosine Accuracy@10
|
174 |
+
- type: cosine_precision@1
|
175 |
+
value: 0.8347103013864849
|
176 |
+
name: Cosine Precision@1
|
177 |
+
- type: cosine_precision@3
|
178 |
+
value: 0.32093764684189546
|
179 |
+
name: Cosine Precision@3
|
180 |
+
- type: cosine_precision@5
|
181 |
+
value: 0.1961278349779626
|
182 |
+
name: Cosine Precision@5
|
183 |
+
- type: cosine_precision@10
|
184 |
+
value: 0.09927196159954321
|
185 |
+
name: Cosine Precision@10
|
186 |
+
- type: cosine_recall@1
|
187 |
+
value: 0.8347103013864849
|
188 |
+
name: Cosine Recall@1
|
189 |
+
- type: cosine_recall@3
|
190 |
+
value: 0.9628129405256866
|
191 |
+
name: Cosine Recall@3
|
192 |
+
- type: cosine_recall@5
|
193 |
+
value: 0.9806391748898128
|
194 |
+
name: Cosine Recall@5
|
195 |
+
- type: cosine_recall@10
|
196 |
+
value: 0.9927196159954319
|
197 |
+
name: Cosine Recall@10
|
198 |
+
- type: cosine_ndcg@10
|
199 |
+
value: 0.9235193716202091
|
200 |
+
name: Cosine Ndcg@10
|
201 |
+
- type: cosine_mrr@10
|
202 |
+
value: 0.9002603606826465
|
203 |
+
name: Cosine Mrr@10
|
204 |
+
- type: cosine_map@100
|
205 |
+
value: 0.9006611894428589
|
206 |
+
name: Cosine Map@100
|
207 |
+
- task:
|
208 |
+
type: information-retrieval
|
209 |
+
name: Information Retrieval
|
210 |
+
dataset:
|
211 |
+
name: dim 512
|
212 |
+
type: dim_512
|
213 |
+
metrics:
|
214 |
+
- type: cosine_accuracy@1
|
215 |
+
value: 0.8341214467978801
|
216 |
+
name: Cosine Accuracy@1
|
217 |
+
- type: cosine_accuracy@3
|
218 |
+
value: 0.9630270694669973
|
219 |
+
name: Cosine Accuracy@3
|
220 |
+
- type: cosine_accuracy@5
|
221 |
+
value: 0.980835459752681
|
222 |
+
name: Cosine Accuracy@5
|
223 |
+
- type: cosine_accuracy@10
|
224 |
+
value: 0.9925947074463339
|
225 |
+
name: Cosine Accuracy@10
|
226 |
+
- type: cosine_precision@1
|
227 |
+
value: 0.8341214467978801
|
228 |
+
name: Cosine Precision@1
|
229 |
+
- type: cosine_precision@3
|
230 |
+
value: 0.32100902315566576
|
231 |
+
name: Cosine Precision@3
|
232 |
+
- type: cosine_precision@5
|
233 |
+
value: 0.19616709195053625
|
234 |
+
name: Cosine Precision@5
|
235 |
+
- type: cosine_precision@10
|
236 |
+
value: 0.09925947074463341
|
237 |
+
name: Cosine Precision@10
|
238 |
+
- type: cosine_recall@1
|
239 |
+
value: 0.8341214467978801
|
240 |
+
name: Cosine Recall@1
|
241 |
+
- type: cosine_recall@3
|
242 |
+
value: 0.9630270694669973
|
243 |
+
name: Cosine Recall@3
|
244 |
+
- type: cosine_recall@5
|
245 |
+
value: 0.980835459752681
|
246 |
+
name: Cosine Recall@5
|
247 |
+
- type: cosine_recall@10
|
248 |
+
value: 0.9925947074463339
|
249 |
+
name: Cosine Recall@10
|
250 |
+
- type: cosine_ndcg@10
|
251 |
+
value: 0.9232781516394674
|
252 |
+
name: Cosine Ndcg@10
|
253 |
+
- type: cosine_mrr@10
|
254 |
+
value: 0.8999735171216805
|
255 |
+
name: Cosine Mrr@10
|
256 |
+
- type: cosine_map@100
|
257 |
+
value: 0.9003855301087177
|
258 |
+
name: Cosine Map@100
|
259 |
+
- task:
|
260 |
+
type: information-retrieval
|
261 |
+
name: Information Retrieval
|
262 |
+
dataset:
|
263 |
+
name: dim 256
|
264 |
+
type: dim_256
|
265 |
+
metrics:
|
266 |
+
- type: cosine_accuracy@1
|
267 |
+
value: 0.8326047001302618
|
268 |
+
name: Cosine Accuracy@1
|
269 |
+
- type: cosine_accuracy@3
|
270 |
+
value: 0.9624382148783927
|
271 |
+
name: Cosine Accuracy@3
|
272 |
+
- type: cosine_accuracy@5
|
273 |
+
value: 0.9801930729287486
|
274 |
+
name: Cosine Accuracy@5
|
275 |
+
- type: cosine_accuracy@10
|
276 |
+
value: 0.9922913581128102
|
277 |
+
name: Cosine Accuracy@10
|
278 |
+
- type: cosine_precision@1
|
279 |
+
value: 0.8326047001302618
|
280 |
+
name: Cosine Precision@1
|
281 |
+
- type: cosine_precision@3
|
282 |
+
value: 0.3208127382927975
|
283 |
+
name: Cosine Precision@3
|
284 |
+
- type: cosine_precision@5
|
285 |
+
value: 0.19603861458574973
|
286 |
+
name: Cosine Precision@5
|
287 |
+
- type: cosine_precision@10
|
288 |
+
value: 0.09922913581128105
|
289 |
+
name: Cosine Precision@10
|
290 |
+
- type: cosine_recall@1
|
291 |
+
value: 0.8326047001302618
|
292 |
+
name: Cosine Recall@1
|
293 |
+
- type: cosine_recall@3
|
294 |
+
value: 0.9624382148783927
|
295 |
+
name: Cosine Recall@3
|
296 |
+
- type: cosine_recall@5
|
297 |
+
value: 0.9801930729287486
|
298 |
+
name: Cosine Recall@5
|
299 |
+
- type: cosine_recall@10
|
300 |
+
value: 0.9922913581128102
|
301 |
+
name: Cosine Recall@10
|
302 |
+
- type: cosine_ndcg@10
|
303 |
+
value: 0.9223721780180253
|
304 |
+
name: Cosine Ndcg@10
|
305 |
+
- type: cosine_mrr@10
|
306 |
+
value: 0.898869719250338
|
307 |
+
name: Cosine Mrr@10
|
308 |
+
- type: cosine_map@100
|
309 |
+
value: 0.8993021227310489
|
310 |
+
name: Cosine Map@100
|
311 |
+
- task:
|
312 |
+
type: information-retrieval
|
313 |
+
name: Information Retrieval
|
314 |
+
dataset:
|
315 |
+
name: dim 128
|
316 |
+
type: dim_128
|
317 |
+
metrics:
|
318 |
+
- type: cosine_accuracy@1
|
319 |
+
value: 0.8294462982459271
|
320 |
+
name: Cosine Accuracy@1
|
321 |
+
- type: cosine_accuracy@3
|
322 |
+
value: 0.9610642208383148
|
323 |
+
name: Cosine Accuracy@3
|
324 |
+
- type: cosine_accuracy@5
|
325 |
+
value: 0.9796399064970289
|
326 |
+
name: Cosine Accuracy@5
|
327 |
+
- type: cosine_accuracy@10
|
328 |
+
value: 0.991720347602648
|
329 |
+
name: Cosine Accuracy@10
|
330 |
+
- type: cosine_precision@1
|
331 |
+
value: 0.8294462982459271
|
332 |
+
name: Cosine Precision@1
|
333 |
+
- type: cosine_precision@3
|
334 |
+
value: 0.3203547402794382
|
335 |
+
name: Cosine Precision@3
|
336 |
+
- type: cosine_precision@5
|
337 |
+
value: 0.19592798129940583
|
338 |
+
name: Cosine Precision@5
|
339 |
+
- type: cosine_precision@10
|
340 |
+
value: 0.09917203476026483
|
341 |
+
name: Cosine Precision@10
|
342 |
+
- type: cosine_recall@1
|
343 |
+
value: 0.8294462982459271
|
344 |
+
name: Cosine Recall@1
|
345 |
+
- type: cosine_recall@3
|
346 |
+
value: 0.9610642208383148
|
347 |
+
name: Cosine Recall@3
|
348 |
+
- type: cosine_recall@5
|
349 |
+
value: 0.9796399064970289
|
350 |
+
name: Cosine Recall@5
|
351 |
+
- type: cosine_recall@10
|
352 |
+
value: 0.991720347602648
|
353 |
+
name: Cosine Recall@10
|
354 |
+
- type: cosine_ndcg@10
|
355 |
+
value: 0.9204835891487085
|
356 |
+
name: Cosine Ndcg@10
|
357 |
+
- type: cosine_mrr@10
|
358 |
+
value: 0.8965493659262566
|
359 |
+
name: Cosine Mrr@10
|
360 |
+
- type: cosine_map@100
|
361 |
+
value: 0.897020544909686
|
362 |
+
name: Cosine Map@100
|
363 |
+
- task:
|
364 |
+
type: information-retrieval
|
365 |
+
name: Information Retrieval
|
366 |
+
dataset:
|
367 |
+
name: dim 64
|
368 |
+
type: dim_64
|
369 |
+
metrics:
|
370 |
+
- type: cosine_accuracy@1
|
371 |
+
value: 0.8210595813779198
|
372 |
+
name: Cosine Accuracy@1
|
373 |
+
- type: cosine_accuracy@3
|
374 |
+
value: 0.9574775610713585
|
375 |
+
name: Cosine Accuracy@3
|
376 |
+
- type: cosine_accuracy@5
|
377 |
+
value: 0.9771595795935119
|
378 |
+
name: Cosine Accuracy@5
|
379 |
+
- type: cosine_accuracy@10
|
380 |
+
value: 0.9906497028960939
|
381 |
+
name: Cosine Accuracy@10
|
382 |
+
- type: cosine_precision@1
|
383 |
+
value: 0.8210595813779198
|
384 |
+
name: Cosine Precision@1
|
385 |
+
- type: cosine_precision@3
|
386 |
+
value: 0.3191591870237861
|
387 |
+
name: Cosine Precision@3
|
388 |
+
- type: cosine_precision@5
|
389 |
+
value: 0.19543191591870243
|
390 |
+
name: Cosine Precision@5
|
391 |
+
- type: cosine_precision@10
|
392 |
+
value: 0.09906497028960942
|
393 |
+
name: Cosine Precision@10
|
394 |
+
- type: cosine_recall@1
|
395 |
+
value: 0.8210595813779198
|
396 |
+
name: Cosine Recall@1
|
397 |
+
- type: cosine_recall@3
|
398 |
+
value: 0.9574775610713585
|
399 |
+
name: Cosine Recall@3
|
400 |
+
- type: cosine_recall@5
|
401 |
+
value: 0.9771595795935119
|
402 |
+
name: Cosine Recall@5
|
403 |
+
- type: cosine_recall@10
|
404 |
+
value: 0.9906497028960939
|
405 |
+
name: Cosine Recall@10
|
406 |
+
- type: cosine_ndcg@10
|
407 |
+
value: 0.9158816707476002
|
408 |
+
name: Cosine Ndcg@10
|
409 |
+
- type: cosine_mrr@10
|
410 |
+
value: 0.8908051588080549
|
411 |
+
name: Cosine Mrr@10
|
412 |
+
- type: cosine_map@100
|
413 |
+
value: 0.8913320555914594
|
414 |
+
name: Cosine Map@100
|
415 |
+
---
|
416 |
|
417 |
+
# BGE_base_3gpp-qa-v2_Matryoshka
|
418 |
|
419 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
420 |
+
|
421 |
+
## Model Details
|
422 |
+
|
423 |
+
### Model Description
|
424 |
+
- **Model Type:** Sentence Transformer
|
425 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
426 |
+
- **Maximum Sequence Length:** 512 tokens
|
427 |
+
- **Output Dimensionality:** 768 dimensions
|
428 |
+
- **Similarity Function:** Cosine Similarity
|
429 |
+
- **Training Dataset:**
|
430 |
+
- json
|
431 |
+
- **Language:** en
|
432 |
+
- **License:** apache-2.0
|
433 |
+
|
434 |
+
### Model Sources
|
435 |
+
|
436 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
437 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
438 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
439 |
+
|
440 |
+
### Full Model Architecture
|
441 |
+
|
442 |
+
```
|
443 |
+
SentenceTransformer(
|
444 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
445 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
446 |
+
(2): Normalize()
|
447 |
+
)
|
448 |
+
```
|
449 |
+
|
450 |
+
## Usage
|
451 |
+
|
452 |
+
### Direct Usage (Sentence Transformers)
|
453 |
+
|
454 |
+
First install the Sentence Transformers library:
|
455 |
+
|
456 |
+
```bash
|
457 |
+
pip install -U sentence-transformers
|
458 |
+
```
|
459 |
+
|
460 |
+
Then you can load this model and run inference.
|
461 |
+
```python
|
462 |
+
from sentence_transformers import SentenceTransformer
|
463 |
+
|
464 |
+
# Download from the 🤗 Hub
|
465 |
+
model = SentenceTransformer("iris49/3gpp-embedding-model-v0")
|
466 |
+
# Run inference
|
467 |
+
sentences = [
|
468 |
+
'What types of data structures are supported by the GET request body on the resource described in table 5.2.11.3.4-2, and how do they influence the request?',
|
469 |
+
"The data structures supported by the GET request body on the resource are detailed in table 5.2.11.3.4-2. These structures define the format and content of the data that can be sent in the request body. They might include fields such as 'filterCriteria', 'sortOrder', or 'pagination', which influence how the server processes the request and returns the appropriate data.",
|
470 |
+
"The specific triggers on the Ro interface that can lead to the termination of the IMS service include: 1) Reception of an unsuccessful Operation Result different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE in the Debit/Reserve Units Response message. 2) Reception of an unsuccessful Result Code different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE within the multiple units operation in the Debit/Reserve Units Response message when only one instance of the multiple units operation field is used. 3) Execution of the termination action procedure as defined in TS 32.299 when only one instance of the Multiple Unit Operation field is used. 4) Execution of the failure handling procedures when the Failure Action is set to 'Terminate' or 'Retry & Terminate'. 5) Reception in the IMS-GWF of an Abort-Session-Request message from OCS.",
|
471 |
+
]
|
472 |
+
embeddings = model.encode(sentences)
|
473 |
+
print(embeddings.shape)
|
474 |
+
# [3, 768]
|
475 |
+
|
476 |
+
# Get the similarity scores for the embeddings
|
477 |
+
similarities = model.similarity(embeddings, embeddings)
|
478 |
+
print(similarities.shape)
|
479 |
+
# [3, 3]
|
480 |
+
```
|
481 |
+
|
482 |
+
<!--
|
483 |
+
### Direct Usage (Transformers)
|
484 |
+
|
485 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
486 |
+
|
487 |
+
</details>
|
488 |
+
-->
|
489 |
+
|
490 |
+
<!--
|
491 |
+
### Downstream Usage (Sentence Transformers)
|
492 |
+
|
493 |
+
You can finetune this model on your own dataset.
|
494 |
+
|
495 |
+
<details><summary>Click to expand</summary>
|
496 |
+
|
497 |
+
</details>
|
498 |
+
-->
|
499 |
+
|
500 |
+
<!--
|
501 |
+
### Out-of-Scope Use
|
502 |
+
|
503 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
504 |
+
-->
|
505 |
+
|
506 |
+
## Evaluation
|
507 |
+
|
508 |
+
### Metrics
|
509 |
+
|
510 |
+
#### Information Retrieval
|
511 |
+
|
512 |
+
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
513 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
514 |
+
|
515 |
+
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|
516 |
+
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
517 |
+
| cosine_accuracy@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
|
518 |
+
| cosine_accuracy@3 | 0.9628 | 0.963 | 0.9624 | 0.9611 | 0.9575 |
|
519 |
+
| cosine_accuracy@5 | 0.9806 | 0.9808 | 0.9802 | 0.9796 | 0.9772 |
|
520 |
+
| cosine_accuracy@10 | 0.9927 | 0.9926 | 0.9923 | 0.9917 | 0.9906 |
|
521 |
+
| cosine_precision@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
|
522 |
+
| cosine_precision@3 | 0.3209 | 0.321 | 0.3208 | 0.3204 | 0.3192 |
|
523 |
+
| cosine_precision@5 | 0.1961 | 0.1962 | 0.196 | 0.1959 | 0.1954 |
|
524 |
+
| cosine_precision@10 | 0.0993 | 0.0993 | 0.0992 | 0.0992 | 0.0991 |
|
525 |
+
| cosine_recall@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
|
526 |
+
| cosine_recall@3 | 0.9628 | 0.963 | 0.9624 | 0.9611 | 0.9575 |
|
527 |
+
| cosine_recall@5 | 0.9806 | 0.9808 | 0.9802 | 0.9796 | 0.9772 |
|
528 |
+
| cosine_recall@10 | 0.9927 | 0.9926 | 0.9923 | 0.9917 | 0.9906 |
|
529 |
+
| **cosine_ndcg@10** | **0.9235** | **0.9233** | **0.9224** | **0.9205** | **0.9159** |
|
530 |
+
| cosine_mrr@10 | 0.9003 | 0.9 | 0.8989 | 0.8965 | 0.8908 |
|
531 |
+
| cosine_map@100 | 0.9007 | 0.9004 | 0.8993 | 0.897 | 0.8913 |
|
532 |
+
|
533 |
+
<!--
|
534 |
+
## Bias, Risks and Limitations
|
535 |
+
|
536 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
537 |
+
-->
|
538 |
+
|
539 |
+
<!--
|
540 |
+
### Recommendations
|
541 |
+
|
542 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
543 |
+
-->
|
544 |
+
|
545 |
+
## Training Details
|
546 |
+
|
547 |
+
### Training Dataset
|
548 |
+
|
549 |
+
#### json
|
550 |
+
|
551 |
+
* Dataset: json
|
552 |
+
* Size: 56,041 training samples
|
553 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
554 |
+
* Approximate statistics based on the first 1000 samples:
|
555 |
+
| | anchor | positive |
|
556 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
557 |
+
| type | string | string |
|
558 |
+
| details | <ul><li>min: 15 tokens</li><li>mean: 30.56 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 42 tokens</li><li>mean: 109.65 tokens</li><li>max: 298 tokens</li></ul> |
|
559 |
+
* Samples:
|
560 |
+
| anchor | positive |
|
561 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
562 |
+
| <code>What does the 'dataStatProps' attribute represent in the 'AnalyticsMetadataInfo' type, and what is its data type?</code> | <code>The 'dataStatProps' attribute in the 'AnalyticsMetadataInfo' type represents a list of dataset statistical properties of the data used to generate the analytics. It is defined as an optional attribute with a data type of 'array(DatasetStatisticalProperty)' and a cardinality of 1..N, meaning it can contain one or more elements.</code> |
|
563 |
+
| <code>Why is it important to have standardized methods for resource management in the Nudm_SubscriberDataManagement Service API?</code> | <code>Standardized methods for resource management in the Nudm_SubscriberDataManagement Service API are important because they ensure uniformity, predictability, and compatibility across different implementations and systems. This standardization facilitates seamless integration, reduces errors, and enhances the efficiency of managing subscriber data, which is critical for maintaining reliable communication services.</code> |
|
564 |
+
| <code>What is the purpose of the Nsmf_PDUSession_SMContextStatusNotify service operation in the context of I-SMF context transfer?</code> | <code>The Nsmf_PDUSession_SMContextStatusNotify service operation is used by the SMF (Session Management Function) to notify its consumers about the status of an SM (Session Management) context related to a PDU (Packet Data Unit) Session. In the context of I-SMF (Intermediate SMF) context transfer, this service operation is used to indicate the transfer of the SM context to a new I-SMF or SMF set. It also allows the SMF to update the SMF-derived CN (Core Network) assisted RAN (Radio Access Network) parameters tuning in the AMF (Access and Mobility Management Function). Additionally, it can report DDN (Downlink Data Notification) failures and provide target DNAI (Data Network Access Identifier) information for the current or next PDU session.</code> |
|
565 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
566 |
+
```json
|
567 |
+
{
|
568 |
+
"loss": "MultipleNegativesRankingLoss",
|
569 |
+
"matryoshka_dims": [
|
570 |
+
768,
|
571 |
+
512,
|
572 |
+
256,
|
573 |
+
128,
|
574 |
+
64
|
575 |
+
],
|
576 |
+
"matryoshka_weights": [
|
577 |
+
1,
|
578 |
+
1,
|
579 |
+
1,
|
580 |
+
1,
|
581 |
+
1
|
582 |
+
],
|
583 |
+
"n_dims_per_step": -1
|
584 |
+
}
|
585 |
+
```
|
586 |
+
|
587 |
+
### Training Hyperparameters
|
588 |
+
#### Non-Default Hyperparameters
|
589 |
+
|
590 |
+
- `eval_strategy`: epoch
|
591 |
+
- `per_device_train_batch_size`: 32
|
592 |
+
- `per_device_eval_batch_size`: 16
|
593 |
+
- `gradient_accumulation_steps`: 16
|
594 |
+
- `learning_rate`: 2e-05
|
595 |
+
- `num_train_epochs`: 4
|
596 |
+
- `lr_scheduler_type`: cosine
|
597 |
+
- `warmup_ratio`: 0.1
|
598 |
+
- `fp16`: True
|
599 |
+
- `load_best_model_at_end`: True
|
600 |
+
- `optim`: adamw_torch_fused
|
601 |
+
- `batch_sampler`: no_duplicates
|
602 |
+
|
603 |
+
#### All Hyperparameters
|
604 |
+
<details><summary>Click to expand</summary>
|
605 |
+
|
606 |
+
- `overwrite_output_dir`: False
|
607 |
+
- `do_predict`: False
|
608 |
+
- `eval_strategy`: epoch
|
609 |
+
- `prediction_loss_only`: True
|
610 |
+
- `per_device_train_batch_size`: 32
|
611 |
+
- `per_device_eval_batch_size`: 16
|
612 |
+
- `per_gpu_train_batch_size`: None
|
613 |
+
- `per_gpu_eval_batch_size`: None
|
614 |
+
- `gradient_accumulation_steps`: 16
|
615 |
+
- `eval_accumulation_steps`: None
|
616 |
+
- `learning_rate`: 2e-05
|
617 |
+
- `weight_decay`: 0.0
|
618 |
+
- `adam_beta1`: 0.9
|
619 |
+
- `adam_beta2`: 0.999
|
620 |
+
- `adam_epsilon`: 1e-08
|
621 |
+
- `max_grad_norm`: 1.0
|
622 |
+
- `num_train_epochs`: 4
|
623 |
+
- `max_steps`: -1
|
624 |
+
- `lr_scheduler_type`: cosine
|
625 |
+
- `lr_scheduler_kwargs`: {}
|
626 |
+
- `warmup_ratio`: 0.1
|
627 |
+
- `warmup_steps`: 0
|
628 |
+
- `log_level`: passive
|
629 |
+
- `log_level_replica`: warning
|
630 |
+
- `log_on_each_node`: True
|
631 |
+
- `logging_nan_inf_filter`: True
|
632 |
+
- `save_safetensors`: True
|
633 |
+
- `save_on_each_node`: False
|
634 |
+
- `save_only_model`: False
|
635 |
+
- `restore_callback_states_from_checkpoint`: False
|
636 |
+
- `no_cuda`: False
|
637 |
+
- `use_cpu`: False
|
638 |
+
- `use_mps_device`: False
|
639 |
+
- `seed`: 42
|
640 |
+
- `data_seed`: None
|
641 |
+
- `jit_mode_eval`: False
|
642 |
+
- `use_ipex`: False
|
643 |
+
- `bf16`: False
|
644 |
+
- `fp16`: True
|
645 |
+
- `fp16_opt_level`: O1
|
646 |
+
- `half_precision_backend`: auto
|
647 |
+
- `bf16_full_eval`: False
|
648 |
+
- `fp16_full_eval`: False
|
649 |
+
- `tf32`: None
|
650 |
+
- `local_rank`: 0
|
651 |
+
- `ddp_backend`: None
|
652 |
+
- `tpu_num_cores`: None
|
653 |
+
- `tpu_metrics_debug`: False
|
654 |
+
- `debug`: []
|
655 |
+
- `dataloader_drop_last`: False
|
656 |
+
- `dataloader_num_workers`: 0
|
657 |
+
- `dataloader_prefetch_factor`: None
|
658 |
+
- `past_index`: -1
|
659 |
+
- `disable_tqdm`: False
|
660 |
+
- `remove_unused_columns`: True
|
661 |
+
- `label_names`: None
|
662 |
+
- `load_best_model_at_end`: True
|
663 |
+
- `ignore_data_skip`: False
|
664 |
+
- `fsdp`: []
|
665 |
+
- `fsdp_min_num_params`: 0
|
666 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
667 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
668 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
669 |
+
- `deepspeed`: None
|
670 |
+
- `label_smoothing_factor`: 0.0
|
671 |
+
- `optim`: adamw_torch_fused
|
672 |
+
- `optim_args`: None
|
673 |
+
- `adafactor`: False
|
674 |
+
- `group_by_length`: False
|
675 |
+
- `length_column_name`: length
|
676 |
+
- `ddp_find_unused_parameters`: None
|
677 |
+
- `ddp_bucket_cap_mb`: None
|
678 |
+
- `ddp_broadcast_buffers`: False
|
679 |
+
- `dataloader_pin_memory`: True
|
680 |
+
- `dataloader_persistent_workers`: False
|
681 |
+
- `skip_memory_metrics`: True
|
682 |
+
- `use_legacy_prediction_loop`: False
|
683 |
+
- `push_to_hub`: False
|
684 |
+
- `resume_from_checkpoint`: None
|
685 |
+
- `hub_model_id`: None
|
686 |
+
- `hub_strategy`: every_save
|
687 |
+
- `hub_private_repo`: False
|
688 |
+
- `hub_always_push`: False
|
689 |
+
- `gradient_checkpointing`: False
|
690 |
+
- `gradient_checkpointing_kwargs`: None
|
691 |
+
- `include_inputs_for_metrics`: False
|
692 |
+
- `eval_do_concat_batches`: True
|
693 |
+
- `fp16_backend`: auto
|
694 |
+
- `push_to_hub_model_id`: None
|
695 |
+
- `push_to_hub_organization`: None
|
696 |
+
- `mp_parameters`:
|
697 |
+
- `auto_find_batch_size`: False
|
698 |
+
- `full_determinism`: False
|
699 |
+
- `torchdynamo`: None
|
700 |
+
- `ray_scope`: last
|
701 |
+
- `ddp_timeout`: 1800
|
702 |
+
- `torch_compile`: False
|
703 |
+
- `torch_compile_backend`: None
|
704 |
+
- `torch_compile_mode`: None
|
705 |
+
- `dispatch_batches`: None
|
706 |
+
- `split_batches`: None
|
707 |
+
- `include_tokens_per_second`: False
|
708 |
+
- `include_num_input_tokens_seen`: False
|
709 |
+
- `neftune_noise_alpha`: None
|
710 |
+
- `optim_target_modules`: None
|
711 |
+
- `batch_eval_metrics`: False
|
712 |
+
- `prompts`: None
|
713 |
+
- `batch_sampler`: no_duplicates
|
714 |
+
- `multi_dataset_batch_sampler`: proportional
|
715 |
+
|
716 |
+
</details>
|
717 |
+
|
718 |
+
### Training Logs
|
719 |
+
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
720 |
+
|:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
721 |
+
| 0.0913 | 10 | 1.4273 | - | - | - | - | - |
|
722 |
+
| 0.1826 | 20 | 0.5399 | - | - | - | - | - |
|
723 |
+
| 0.2740 | 30 | 0.1252 | - | - | - | - | - |
|
724 |
+
| 0.3653 | 40 | 0.0625 | - | - | - | - | - |
|
725 |
+
| 0.4566 | 50 | 0.0507 | - | - | - | - | - |
|
726 |
+
| 0.5479 | 60 | 0.0366 | - | - | - | - | - |
|
727 |
+
| 0.6393 | 70 | 0.029 | - | - | - | - | - |
|
728 |
+
| 0.7306 | 80 | 0.0239 | - | - | - | - | - |
|
729 |
+
| 0.8219 | 90 | 0.0252 | - | - | - | - | - |
|
730 |
+
| 0.9132 | 100 | 0.0237 | - | - | - | - | - |
|
731 |
+
| 0.9954 | 109 | - | 0.9199 | 0.9195 | 0.9180 | 0.9150 | 0.9081 |
|
732 |
+
| 1.0046 | 110 | 0.026 | - | - | - | - | - |
|
733 |
+
| 1.0959 | 120 | 0.017 | - | - | - | - | - |
|
734 |
+
| 1.1872 | 130 | 0.02 | - | - | - | - | - |
|
735 |
+
| 1.2785 | 140 | 0.0125 | - | - | - | - | - |
|
736 |
+
| 1.3699 | 150 | 0.0134 | - | - | - | - | - |
|
737 |
+
| 1.4612 | 160 | 0.0128 | - | - | - | - | - |
|
738 |
+
| 1.5525 | 170 | 0.0123 | - | - | - | - | - |
|
739 |
+
| 1.6438 | 180 | 0.0097 | - | - | - | - | - |
|
740 |
+
| 1.7352 | 190 | 0.0101 | - | - | - | - | - |
|
741 |
+
| 1.8265 | 200 | 0.0124 | - | - | - | - | - |
|
742 |
+
| 1.9178 | 210 | 0.0116 | - | - | - | - | - |
|
743 |
+
| 2.0 | 219 | - | 0.9220 | 0.9216 | 0.9206 | 0.9184 | 0.9130 |
|
744 |
+
| 2.0091 | 220 | 0.012 | - | - | - | - | - |
|
745 |
+
| 2.1005 | 230 | 0.0111 | - | - | - | - | - |
|
746 |
+
| 2.1918 | 240 | 0.0101 | - | - | - | - | - |
|
747 |
+
| 2.2831 | 250 | 0.0101 | - | - | - | - | - |
|
748 |
+
| 2.3744 | 260 | 0.009 | - | - | - | - | - |
|
749 |
+
| 2.4658 | 270 | 0.0103 | - | - | - | - | - |
|
750 |
+
| 2.5571 | 280 | 0.009 | - | - | - | - | - |
|
751 |
+
| 2.6484 | 290 | 0.0083 | - | - | - | - | - |
|
752 |
+
| 2.7397 | 300 | 0.0076 | - | - | - | - | - |
|
753 |
+
| 2.8311 | 310 | 0.0093 | - | - | - | - | - |
|
754 |
+
| 2.9224 | 320 | 0.0104 | - | - | - | - | - |
|
755 |
+
| 2.9954 | 328 | - | 0.9234 | 0.9230 | 0.9221 | 0.9201 | 0.9156 |
|
756 |
+
| 3.0137 | 330 | 0.0104 | - | - | - | - | - |
|
757 |
+
| 3.1050 | 340 | 0.0089 | - | - | - | - | - |
|
758 |
+
| 3.1963 | 350 | 0.0084 | - | - | - | - | - |
|
759 |
+
| 3.2877 | 360 | 0.0082 | - | - | - | - | - |
|
760 |
+
| 3.3790 | 370 | 0.0089 | - | - | - | - | - |
|
761 |
+
| 3.4703 | 380 | 0.0083 | - | - | - | - | - |
|
762 |
+
| 3.5616 | 390 | 0.0061 | - | - | - | - | - |
|
763 |
+
| 3.6530 | 400 | 0.0065 | - | - | - | - | - |
|
764 |
+
| 3.7443 | 410 | 0.0063 | - | - | - | - | - |
|
765 |
+
| 3.8356 | 420 | 0.0084 | - | - | - | - | - |
|
766 |
+
| 3.9269 | 430 | 0.0083 | - | - | - | - | - |
|
767 |
+
| **3.9817** | **436** | **-** | **0.9235** | **0.9233** | **0.9224** | **0.9205** | **0.9159** |
|
768 |
+
|
769 |
+
* The bold row denotes the saved checkpoint.
|
770 |
+
|
771 |
+
### Framework Versions
|
772 |
+
- Python: 3.11.11
|
773 |
+
- Sentence Transformers: 3.3.1
|
774 |
+
- Transformers: 4.41.2
|
775 |
+
- PyTorch: 2.1.2+cu121
|
776 |
+
- Accelerate: 1.2.1
|
777 |
+
- Datasets: 2.19.1
|
778 |
+
- Tokenizers: 0.19.1
|
779 |
+
|
780 |
+
## Citation
|
781 |
+
|
782 |
+
### BibTeX
|
783 |
+
|
784 |
+
#### Sentence Transformers
|
785 |
+
```bibtex
|
786 |
+
@inproceedings{reimers-2019-sentence-bert,
|
787 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
788 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
789 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
790 |
+
month = "11",
|
791 |
+
year = "2019",
|
792 |
+
publisher = "Association for Computational Linguistics",
|
793 |
+
url = "https://arxiv.org/abs/1908.10084",
|
794 |
+
}
|
795 |
+
```
|
796 |
+
|
797 |
+
#### MatryoshkaLoss
|
798 |
+
```bibtex
|
799 |
+
@misc{kusupati2024matryoshka,
|
800 |
+
title={Matryoshka Representation Learning},
|
801 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
802 |
+
year={2024},
|
803 |
+
eprint={2205.13147},
|
804 |
+
archivePrefix={arXiv},
|
805 |
+
primaryClass={cs.LG}
|
806 |
+
}
|
807 |
+
```
|
808 |
+
|
809 |
+
#### MultipleNegativesRankingLoss
|
810 |
+
```bibtex
|
811 |
+
@misc{henderson2017efficient,
|
812 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
813 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
814 |
+
year={2017},
|
815 |
+
eprint={1705.00652},
|
816 |
+
archivePrefix={arXiv},
|
817 |
+
primaryClass={cs.CL}
|
818 |
+
}
|
819 |
+
```
|
820 |
+
|
821 |
+
<!--
|
822 |
+
## Glossary
|
823 |
+
|
824 |
+
*Clearly define terms in order to be accessible across audiences.*
|
825 |
+
-->
|
826 |
+
|
827 |
+
<!--
|
828 |
+
## Model Card Authors
|
829 |
+
|
830 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
831 |
+
-->
|
832 |
+
|
833 |
+
<!--
|
834 |
+
## Model Card Contact
|
835 |
+
|
836 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
837 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/drive/MyDrive/my_3gpp_model_study/sentence_transformer_w_qa_v2_full",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.41.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec4faa50a6dabb8a103c310999b4cdf73deb1705f52bfc37c198e76efd5b03de
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|