File size: 9,829 Bytes
f5210ab bf7f6a8 f5210ab bf7f6a8 f5210ab bf7f6a8 f5210ab bf7f6a8 f5210ab bf7f6a8 f5210ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import base64
import json
import sys
from collections import defaultdict
from io import BytesIO
from pprint import pprint
from typing import Any, Dict, List
import torch
from diffusers import (
DiffusionPipeline,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
)
from safetensors.torch import load_file
from torch import autocast
# https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints
# https://huggingface.co/docs/inference-endpoints/guides/custom_handler
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type != "cuda":
raise ValueError("need to run on GPU")
class EndpointHandler:
LORA_PATHS = {
"hairdetailer": "isatis/kw/lora/hairdetailer.safetensors",
"lora_leica": "isatis/kw/lora/lora_leica.safetensors",
"epiNoiseoffset_v2": "isatis/kw/lora/epiNoiseoffset_v2.safetensors",
"MBHU-TT2FRS": "isatis/kw/lora/MBHU-TT2FRS.safetensors",
"ShinyOiledSkin_v20": "isatis/kw/lora/ShinyOiledSkin_v20-LoRA.safetensors",
"polyhedron_new_skin_v1.1": "isatis/kw/lora/polyhedron_new_skin_v1.1.safetensors",
"detailed_eye-10": "isatis/kw/lora/detailed_eye-10.safetensors",
"add_detail": "isatis/kw/lora/add_detail.safetensors",
"MuscleGirl_v1": "isatis/kw/lora/MuscleGirl_v1.safetensors",
}
TEXTUAL_INVERSION = [
{
"weight_name": "https://huggingface.co/isatis/kw/embeddings/EasyNegative.safetensors",
"token": "easynegative",
},
{"weight_name": "isatis/kw/embeddings/badhandv4.pt", "token": "badhandv4"},
{
"weight_name": "isatis/kw/embeddings/bad-artist-anime.pt",
"token": "bad-artist-anime",
},
{"weight_name": "isatis/kw/embeddings/NegfeetV2.pt", "token": "NegfeetV2"},
{
"weight_name": "isatis/kw/embeddings/ng_deepnegative_v1_75t.pt",
"token": "ng_deepnegative_v1_75t",
},
{"weight_name": "isatis/kw/embeddings/bad-hands-5.pt", "token": "bad-hands-5"},
]
def __init__(self, path="."):
# load the optimized model
self.pipe = DiffusionPipeline.from_pretrained(
path,
custom_pipeline="lpw_stable_diffusion", # avoid 77 token limit
torch_dtype=torch.float16, # accelerate render
)
self.pipe = self.pipe.to(device)
# DPM++ 2M SDE Karras
# increase step to avoid high contrast num_inference_steps=30
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config,
use_karras_sigmas=True,
algorithm_type="sde-dpmsolver++",
)
# Mode boulardus
self.pipe.safety_checker = None
# Load negative embeddings to avoid bad hands, etc
self.load_embeddings()
# Load default Lora models
self.pipe = self.load_selected_loras(
[
("polyhedron_new_skin_v1.1", 0.35), # nice Skin
("detailed_eye-10", 0.3), # nice eyes
("add_detail", 0.4), # detailed pictures
("MuscleGirl_v1", 0.3), # shape persons
],
)
# boosts performance by another 20%
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe.enable_attention_slicing()
def load_lora(self, pipeline, lora_path, lora_weight=0.5):
state_dict = load_file(lora_path)
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
alpha = lora_weight
visited = []
for key in state_dict:
state_dict[key] = state_dict[key].to(device)
# directly update weight in diffusers model
for key in state_dict:
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
layer_infos = (
key.split(".")[0]
.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1]
.split("_")
)
curr_layer = pipeline.text_encoder
else:
layer_infos = (
key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
)
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# org_forward(x) + lora_up(lora_down(x)) * multiplier
pair_keys = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = (
state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
)
weight_down = (
state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
)
curr_layer.weight.data += alpha * torch.mm(
weight_up, weight_down
).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
return pipeline
def load_embeddings(self):
"""Load textual inversions, avoid bad prompts"""
for model in EndpointHandler.TEXTUAL_INVERSION:
self.pipe.load_textual_inversion(
".", weight_name=model["weight_name"], token=model["token"]
)
def load_selected_loras(self, selections):
"""Load Loras models, can lead to marvelous creations"""
for model_name, weight in selections:
lora_path = EndpointHandler.LORA_PATHS[model_name]
self.pipe = self.load_lora(
pipeline=self.pipe, lora_path=lora_path, lora_weight=weight
)
return self.pipe
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. base64 encoded image
"""
global device
# Which Lora do we load ?
# selected_models = [
# ("ShinyOiledSkin_v20", 0.3),
# ("MBHU-TT2FRS", 0.5),
# ("hairdetailer", 0.5),
# ("lora_leica", 0.5),
# ("epiNoiseoffset_v2", 0.5),
# ]
# 1. Verify input arguments
required_fields = [
"prompt",
"negative_prompt",
"width",
"num_inference_steps",
"height",
"seed",
"guidance_scale",
]
missing_fields = [field for field in required_fields if field not in data]
if missing_fields:
return {
"flag": "error",
"message": f"Missing fields: {', '.join(missing_fields)}",
}
# Now extract the fields
prompt = data["prompt"]
negative_prompt = data["negative_prompt"]
loras_model = data.pop("loras_model", None)
seed = data["seed"]
width = data["width"]
num_inference_steps = data["num_inference_steps"]
height = data["height"]
guidance_scale = data["guidance_scale"]
# USe this to add automatically some negative prompts
forced_negative = (
negative_prompt
+ """easynegative, badhandv4, bad-artist-anime, NegfeetV2, ng_deepnegative_v1_75t, bad-hands-5 """
)
# Set the generator seed if provided
generator = torch.Generator(device="cuda").manual_seed(seed) if seed else None
# Load the provided Lora models
if loras_model:
self.pipe = self.load_selected_loras(loras_model)
try:
# 2. Process
with autocast(device.type):
image = self.pipe.text2img(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=height,
width=width,
negative_prompt=forced_negative,
generator=generator,
max_embeddings_multiples=5,
).images[0]
# encode image as base 64
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
# Return the success response
return {"flag": "success", "image": img_str.decode()}
except Exception as e:
# Handle any other exceptions and return an error response
return {"flag": "error", "message": str(e)}
|