PD model and funcitonnal endpoint inference + check progress'
Browse files- feature_extractor/preprocessor_config.json +1 -1
- handler.py +164 -42
- lora/flat2.safetensors +3 -0
- model_index.json +1 -1
- safety_checker/config.json +4 -17
- safety_checker/pytorch_model.bin +2 -2
- text_encoder/config.json +1 -1
- text_encoder/pytorch_model.bin +2 -2
- tokenizer/tokenizer_config.json +1 -2
feature_extractor/preprocessor_config.json
CHANGED
@@ -14,7 +14,7 @@
|
|
14 |
0.4578275,
|
15 |
0.40821073
|
16 |
],
|
17 |
-
"image_processor_type": "
|
18 |
"image_std": [
|
19 |
0.26862954,
|
20 |
0.26130258,
|
|
|
14 |
0.4578275,
|
15 |
0.40821073
|
16 |
],
|
17 |
+
"image_processor_type": "CLIPFeatureExtractor",
|
18 |
"image_std": [
|
19 |
0.26862954,
|
20 |
0.26130258,
|
handler.py
CHANGED
@@ -7,6 +7,9 @@ from pprint import pprint
|
|
7 |
from typing import Any, Dict, List
|
8 |
import os
|
9 |
from pathlib import Path
|
|
|
|
|
|
|
10 |
|
11 |
import torch
|
12 |
from diffusers import (
|
@@ -14,12 +17,12 @@ from diffusers import (
|
|
14 |
DPMSolverMultistepScheduler,
|
15 |
DPMSolverSinglestepScheduler,
|
16 |
EulerAncestralDiscreteScheduler,
|
|
|
17 |
)
|
18 |
from safetensors.torch import load_file
|
19 |
-
from torch import autocast
|
20 |
-
|
21 |
-
|
22 |
-
# https://huggingface.co/docs/inference-endpoints/guides/custom_handler
|
23 |
|
24 |
REPO_DIR = Path(__file__).resolve().parent
|
25 |
|
@@ -48,6 +51,7 @@ class EndpointHandler:
|
|
48 |
"detailed_eye-10": str(REPO_DIR / "lora/detailed_eye-10.safetensors"),
|
49 |
"add_detail": str(REPO_DIR / "lora/add_detail.safetensors"),
|
50 |
"MuscleGirl_v1": str(REPO_DIR / "lora/MuscleGirl_v1.safetensors"),
|
|
|
51 |
}
|
52 |
|
53 |
TEXTUAL_INVERSION = [
|
@@ -55,10 +59,6 @@ class EndpointHandler:
|
|
55 |
"weight_name": str(REPO_DIR / "embeddings/EasyNegative.safetensors"),
|
56 |
"token": "easynegative",
|
57 |
},
|
58 |
-
{
|
59 |
-
"weight_name": str(REPO_DIR / "embeddings/EasyNegative.safetensors"),
|
60 |
-
"token": "EasyNegative",
|
61 |
-
},
|
62 |
{
|
63 |
"weight_name": str(REPO_DIR / "embeddings/badhandv4.pt"),
|
64 |
"token": "badhandv4",
|
@@ -69,16 +69,12 @@ class EndpointHandler:
|
|
69 |
},
|
70 |
{
|
71 |
"weight_name": str(REPO_DIR / "embeddings/NegfeetV2.pt"),
|
72 |
-
"token": "
|
73 |
},
|
74 |
{
|
75 |
"weight_name": str(REPO_DIR / "embeddings/ng_deepnegative_v1_75t.pt"),
|
76 |
"token": "ng_deepnegative_v1_75t",
|
77 |
},
|
78 |
-
{
|
79 |
-
"weight_name": str(REPO_DIR / "embeddings/ng_deepnegative_v1_75t.pt"),
|
80 |
-
"token": "NG_DeepNegative_V1_75T",
|
81 |
-
},
|
82 |
{
|
83 |
"weight_name": str(REPO_DIR / "embeddings/bad-hands-5.pt"),
|
84 |
"token": "bad-hands-5",
|
@@ -86,6 +82,15 @@ class EndpointHandler:
|
|
86 |
]
|
87 |
|
88 |
def __init__(self, path="."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
# load the optimized model
|
90 |
self.pipe = DiffusionPipeline.from_pretrained(
|
91 |
path,
|
@@ -94,30 +99,31 @@ class EndpointHandler:
|
|
94 |
)
|
95 |
self.pipe = self.pipe.to(device)
|
96 |
|
|
|
|
|
97 |
# DPM++ 2M SDE Karras
|
98 |
# increase step to avoid high contrast num_inference_steps=30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
100 |
self.pipe.scheduler.config,
|
101 |
use_karras_sigmas=True,
|
102 |
-
algorithm_type="sde-dpmsolver++",
|
103 |
)
|
104 |
|
105 |
# Mode boulardus
|
106 |
self.pipe.safety_checker = None
|
107 |
|
|
|
|
|
|
|
108 |
# Load negative embeddings to avoid bad hands, etc
|
109 |
self.load_embeddings()
|
110 |
|
111 |
-
# Load default Lora models
|
112 |
-
self.pipe = self.load_selected_loras(
|
113 |
-
[
|
114 |
-
("polyhedron_new_skin_v1.1", 0.35), # nice Skin
|
115 |
-
("detailed_eye-10", 0.3), # nice eyes
|
116 |
-
("add_detail", 0.4), # detailed pictures
|
117 |
-
("MuscleGirl_v1", 0.3), # shape persons
|
118 |
-
],
|
119 |
-
)
|
120 |
-
|
121 |
# boosts performance by another 20%
|
122 |
self.pipe.enable_xformers_memory_efficient_attention()
|
123 |
self.pipe.enable_attention_slicing()
|
@@ -215,14 +221,121 @@ class EndpointHandler:
|
|
215 |
)
|
216 |
return self.pipe
|
217 |
|
218 |
-
def __call__(self, data: Any) ->
|
219 |
-
"""
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
global device
|
227 |
|
228 |
# Which Lora do we load ?
|
@@ -241,8 +354,8 @@ class EndpointHandler:
|
|
241 |
"width",
|
242 |
"num_inference_steps",
|
243 |
"height",
|
244 |
-
"seed",
|
245 |
"guidance_scale",
|
|
|
246 |
]
|
247 |
|
248 |
missing_fields = [field for field in required_fields if field not in data]
|
@@ -256,17 +369,21 @@ class EndpointHandler:
|
|
256 |
# Now extract the fields
|
257 |
prompt = data["prompt"]
|
258 |
negative_prompt = data["negative_prompt"]
|
259 |
-
loras_model = data.
|
260 |
-
seed = data
|
261 |
width = data["width"]
|
262 |
num_inference_steps = data["num_inference_steps"]
|
263 |
height = data["height"]
|
264 |
guidance_scale = data["guidance_scale"]
|
|
|
|
|
|
|
|
|
265 |
|
266 |
# USe this to add automatically some negative prompts
|
267 |
forced_negative = (
|
268 |
negative_prompt
|
269 |
-
+ """easynegative, badhandv4, bad-artist-anime,
|
270 |
)
|
271 |
|
272 |
# Set the generator seed if provided
|
@@ -288,15 +405,20 @@ class EndpointHandler:
|
|
288 |
negative_prompt=forced_negative,
|
289 |
generator=generator,
|
290 |
max_embeddings_multiples=5,
|
|
|
|
|
|
|
|
|
|
|
291 |
).images[0]
|
292 |
|
293 |
-
#
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
|
298 |
-
#
|
299 |
-
|
300 |
|
301 |
except Exception as e:
|
302 |
# Handle any other exceptions and return an error response
|
|
|
7 |
from typing import Any, Dict, List
|
8 |
import os
|
9 |
from pathlib import Path
|
10 |
+
from typing import Union
|
11 |
+
from concurrent.futures import ThreadPoolExecutor
|
12 |
+
import numpy as np
|
13 |
|
14 |
import torch
|
15 |
from diffusers import (
|
|
|
17 |
DPMSolverMultistepScheduler,
|
18 |
DPMSolverSinglestepScheduler,
|
19 |
EulerAncestralDiscreteScheduler,
|
20 |
+
utils,
|
21 |
)
|
22 |
from safetensors.torch import load_file
|
23 |
+
from torch import autocast, tensor
|
24 |
+
import torchvision.transforms
|
25 |
+
from PIL import Image
|
|
|
26 |
|
27 |
REPO_DIR = Path(__file__).resolve().parent
|
28 |
|
|
|
51 |
"detailed_eye-10": str(REPO_DIR / "lora/detailed_eye-10.safetensors"),
|
52 |
"add_detail": str(REPO_DIR / "lora/add_detail.safetensors"),
|
53 |
"MuscleGirl_v1": str(REPO_DIR / "lora/MuscleGirl_v1.safetensors"),
|
54 |
+
"flat2": str(REPO_DIR / "lora/flat2.safetensors"),
|
55 |
}
|
56 |
|
57 |
TEXTUAL_INVERSION = [
|
|
|
59 |
"weight_name": str(REPO_DIR / "embeddings/EasyNegative.safetensors"),
|
60 |
"token": "easynegative",
|
61 |
},
|
|
|
|
|
|
|
|
|
62 |
{
|
63 |
"weight_name": str(REPO_DIR / "embeddings/badhandv4.pt"),
|
64 |
"token": "badhandv4",
|
|
|
69 |
},
|
70 |
{
|
71 |
"weight_name": str(REPO_DIR / "embeddings/NegfeetV2.pt"),
|
72 |
+
"token": "negfeetv2",
|
73 |
},
|
74 |
{
|
75 |
"weight_name": str(REPO_DIR / "embeddings/ng_deepnegative_v1_75t.pt"),
|
76 |
"token": "ng_deepnegative_v1_75t",
|
77 |
},
|
|
|
|
|
|
|
|
|
78 |
{
|
79 |
"weight_name": str(REPO_DIR / "embeddings/bad-hands-5.pt"),
|
80 |
"token": "bad-hands-5",
|
|
|
82 |
]
|
83 |
|
84 |
def __init__(self, path="."):
|
85 |
+
self.inference_progress = {} # Dictionary to store progress of each request
|
86 |
+
self.inference_images = {} # Dictionary to store latest image of each request
|
87 |
+
self.total_steps = {}
|
88 |
+
self.inference_in_progress = False
|
89 |
+
|
90 |
+
self.executor = ThreadPoolExecutor(
|
91 |
+
max_workers=1
|
92 |
+
) # Vous pouvez ajuster max_workers en fonction de vos besoins
|
93 |
+
|
94 |
# load the optimized model
|
95 |
self.pipe = DiffusionPipeline.from_pretrained(
|
96 |
path,
|
|
|
99 |
)
|
100 |
self.pipe = self.pipe.to(device)
|
101 |
|
102 |
+
# https://stablediffusionapi.com/docs/a1111schedulers/
|
103 |
+
|
104 |
# DPM++ 2M SDE Karras
|
105 |
# increase step to avoid high contrast num_inference_steps=30
|
106 |
+
# self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
107 |
+
# self.pipe.scheduler.config,
|
108 |
+
# use_karras_sigmas=True,
|
109 |
+
# algorithm_type="sde-dpmsolver++",
|
110 |
+
# )
|
111 |
+
# DPM++ 2M Karras
|
112 |
+
# increase step to avoid high contrast num_inference_steps=30
|
113 |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
114 |
self.pipe.scheduler.config,
|
115 |
use_karras_sigmas=True,
|
|
|
116 |
)
|
117 |
|
118 |
# Mode boulardus
|
119 |
self.pipe.safety_checker = None
|
120 |
|
121 |
+
# Disable progress bar
|
122 |
+
self.pipe.set_progress_bar_config(disable=True)
|
123 |
+
|
124 |
# Load negative embeddings to avoid bad hands, etc
|
125 |
self.load_embeddings()
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
# boosts performance by another 20%
|
128 |
self.pipe.enable_xformers_memory_efficient_attention()
|
129 |
self.pipe.enable_attention_slicing()
|
|
|
221 |
)
|
222 |
return self.pipe
|
223 |
|
224 |
+
def __call__(self, data: Any) -> Dict:
|
225 |
+
"""Handle incoming requests."""
|
226 |
+
|
227 |
+
action = data.get("action", None)
|
228 |
+
request_id = data.get("request_id")
|
229 |
+
|
230 |
+
# Check if the request_id is valid for all actions
|
231 |
+
if not request_id:
|
232 |
+
return {"flag": "error", "message": "Missing request_id."}
|
233 |
+
|
234 |
+
if action == "check_progress":
|
235 |
+
return self.check_progress(request_id)
|
236 |
+
|
237 |
+
elif action == "inference":
|
238 |
+
# Check if an inference is already in progress
|
239 |
+
if self.inference_in_progress:
|
240 |
+
return {
|
241 |
+
"flag": "error",
|
242 |
+
"message": "Another inference is already in progress. Please wait.",
|
243 |
+
}
|
244 |
+
|
245 |
+
# Set the inference state to in progress
|
246 |
+
self.clean_request_data(request_id)
|
247 |
+
self.inference_in_progress = True
|
248 |
+
self.inference_progress[request_id] = 0
|
249 |
+
self.inference_images[request_id] = None
|
250 |
+
|
251 |
+
self.executor.submit(self.start_inference, data)
|
252 |
+
|
253 |
+
return {
|
254 |
+
"flag": "success",
|
255 |
+
"message": "Inference started",
|
256 |
+
"request_id": request_id,
|
257 |
+
}
|
258 |
+
|
259 |
+
else:
|
260 |
+
return {"flag": "error", "message": f"Unsupported action: {action}"}
|
261 |
+
|
262 |
+
def clean_request_data(self, request_id: str):
|
263 |
+
"""Clean up the data related to a specific request ID."""
|
264 |
+
|
265 |
+
# Remove the request ID from the progress dictionary
|
266 |
+
self.inference_progress.pop(request_id, None)
|
267 |
+
|
268 |
+
# Remove the request ID from the images dictionary
|
269 |
+
self.inference_images.pop(request_id, None)
|
270 |
+
|
271 |
+
# Remove the request ID from the total_steps dictionary
|
272 |
+
self.total_steps.pop(request_id, None)
|
273 |
+
|
274 |
+
# Set inference to False
|
275 |
+
self.inference_in_progress = False
|
276 |
+
|
277 |
+
def progress_callback(
|
278 |
+
self,
|
279 |
+
step: int,
|
280 |
+
timestep: int,
|
281 |
+
latents: Any,
|
282 |
+
request_id: str,
|
283 |
+
status: str,
|
284 |
+
):
|
285 |
+
try:
|
286 |
+
if status == "progress":
|
287 |
+
# Latents to numpy
|
288 |
+
img_data = self.pipe.decode_latents(latents)
|
289 |
+
img_data = (img_data.squeeze() * 255).astype(np.uint8)
|
290 |
+
img = Image.fromarray(img_data, "RGB")
|
291 |
+
# print(img_data)
|
292 |
+
else:
|
293 |
+
# pil object
|
294 |
+
# print(latents)
|
295 |
+
img = latents
|
296 |
+
|
297 |
+
buffered = BytesIO()
|
298 |
+
img.save(buffered, format="PNG")
|
299 |
+
|
300 |
+
# print(status)
|
301 |
+
# Save the image to a file
|
302 |
+
# img.save("squirel.png", format="PNG")
|
303 |
+
|
304 |
+
# Encode the image into a base64 string representation
|
305 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
306 |
+
|
307 |
+
except Exception as e:
|
308 |
+
print(f"Error: {e}")
|
309 |
+
|
310 |
+
# Store progress and image
|
311 |
+
progress_percentage = (
|
312 |
+
step / self.total_steps[request_id]
|
313 |
+
) * 100 # Assuming self.total_steps is the total number of steps for inference
|
314 |
+
|
315 |
+
self.inference_progress[request_id] = progress_percentage
|
316 |
+
self.inference_images[request_id] = img_str
|
317 |
+
|
318 |
+
def check_progress(self, request_id: str) -> Dict[str, Union[str, float]]:
|
319 |
+
progress = self.inference_progress.get(request_id, 0)
|
320 |
+
latest_image = self.inference_images.get(request_id, None)
|
321 |
+
|
322 |
+
# print(self.inference_progress)
|
323 |
+
|
324 |
+
if progress >= 100:
|
325 |
+
status = "complete"
|
326 |
+
else:
|
327 |
+
status = "in-progress"
|
328 |
+
|
329 |
+
return {
|
330 |
+
"flag": "success",
|
331 |
+
"status": status,
|
332 |
+
"progress": int(progress),
|
333 |
+
"image": latest_image,
|
334 |
+
}
|
335 |
+
|
336 |
+
def start_inference(self, data: Dict) -> Dict:
|
337 |
+
"""Start a new inference."""
|
338 |
+
|
339 |
global device
|
340 |
|
341 |
# Which Lora do we load ?
|
|
|
354 |
"width",
|
355 |
"num_inference_steps",
|
356 |
"height",
|
|
|
357 |
"guidance_scale",
|
358 |
+
"request_id",
|
359 |
]
|
360 |
|
361 |
missing_fields = [field for field in required_fields if field not in data]
|
|
|
369 |
# Now extract the fields
|
370 |
prompt = data["prompt"]
|
371 |
negative_prompt = data["negative_prompt"]
|
372 |
+
loras_model = data.get("loras_model", None)
|
373 |
+
seed = data.get("seed", None)
|
374 |
width = data["width"]
|
375 |
num_inference_steps = data["num_inference_steps"]
|
376 |
height = data["height"]
|
377 |
guidance_scale = data["guidance_scale"]
|
378 |
+
request_id = data["request_id"]
|
379 |
+
|
380 |
+
# Used for progress checker
|
381 |
+
self.total_steps[request_id] = num_inference_steps
|
382 |
|
383 |
# USe this to add automatically some negative prompts
|
384 |
forced_negative = (
|
385 |
negative_prompt
|
386 |
+
+ """, easynegative, badhandv4, bad-artist-anime, negfeetv2, ng_deepnegative_v1_75t, bad-hands-5, """
|
387 |
)
|
388 |
|
389 |
# Set the generator seed if provided
|
|
|
405 |
negative_prompt=forced_negative,
|
406 |
generator=generator,
|
407 |
max_embeddings_multiples=5,
|
408 |
+
callback=lambda step, timestep, latents: self.progress_callback(
|
409 |
+
step, timestep, latents, request_id, "progress"
|
410 |
+
),
|
411 |
+
callback_steps=8, # The frequency at which the callback function is called.
|
412 |
+
# output_type="pt",
|
413 |
).images[0]
|
414 |
|
415 |
+
# print(image)
|
416 |
+
self.progress_callback(
|
417 |
+
num_inference_steps, 0, image, request_id, "complete"
|
418 |
+
)
|
419 |
|
420 |
+
# for debug
|
421 |
+
# image.save("squirelb.png", format="PNG")
|
422 |
|
423 |
except Exception as e:
|
424 |
# Handle any other exceptions and return an error response
|
lora/flat2.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:054e950e72181bb45ddbc7106d3625de406477725b5b313a91fe4522f03dbe0a
|
3 |
+
size 6865699
|
model_index.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"_diffusers_version": "0.20.0",
|
4 |
"feature_extractor": [
|
5 |
"transformers",
|
6 |
-
"
|
7 |
],
|
8 |
"requires_safety_checker": true,
|
9 |
"safety_checker": [
|
|
|
3 |
"_diffusers_version": "0.20.0",
|
4 |
"feature_extractor": [
|
5 |
"transformers",
|
6 |
+
"CLIPFeatureExtractor"
|
7 |
],
|
8 |
"requires_safety_checker": true,
|
9 |
"safety_checker": [
|
safety_checker/config.json
CHANGED
@@ -15,7 +15,7 @@
|
|
15 |
"attention_dropout": 0.0,
|
16 |
"bad_words_ids": null,
|
17 |
"begin_suppress_tokens": null,
|
18 |
-
"bos_token_id":
|
19 |
"chunk_size_feed_forward": 0,
|
20 |
"cross_attention_hidden_size": null,
|
21 |
"decoder_start_token_id": null,
|
@@ -24,7 +24,7 @@
|
|
24 |
"dropout": 0.0,
|
25 |
"early_stopping": false,
|
26 |
"encoder_no_repeat_ngram_size": 0,
|
27 |
-
"eos_token_id":
|
28 |
"exponential_decay_length_penalty": null,
|
29 |
"finetuning_task": null,
|
30 |
"forced_bos_token_id": null,
|
@@ -80,17 +80,11 @@
|
|
80 |
"top_p": 1.0,
|
81 |
"torch_dtype": null,
|
82 |
"torchscript": false,
|
83 |
-
"transformers_version": "4.
|
84 |
"typical_p": 1.0,
|
85 |
"use_bfloat16": false,
|
86 |
"vocab_size": 49408
|
87 |
},
|
88 |
-
"text_config_dict": {
|
89 |
-
"hidden_size": 768,
|
90 |
-
"intermediate_size": 3072,
|
91 |
-
"num_attention_heads": 12,
|
92 |
-
"num_hidden_layers": 12
|
93 |
-
},
|
94 |
"torch_dtype": "float32",
|
95 |
"transformers_version": null,
|
96 |
"vision_config": {
|
@@ -167,15 +161,8 @@
|
|
167 |
"top_p": 1.0,
|
168 |
"torch_dtype": null,
|
169 |
"torchscript": false,
|
170 |
-
"transformers_version": "4.
|
171 |
"typical_p": 1.0,
|
172 |
"use_bfloat16": false
|
173 |
-
},
|
174 |
-
"vision_config_dict": {
|
175 |
-
"hidden_size": 1024,
|
176 |
-
"intermediate_size": 4096,
|
177 |
-
"num_attention_heads": 16,
|
178 |
-
"num_hidden_layers": 24,
|
179 |
-
"patch_size": 14
|
180 |
}
|
181 |
}
|
|
|
15 |
"attention_dropout": 0.0,
|
16 |
"bad_words_ids": null,
|
17 |
"begin_suppress_tokens": null,
|
18 |
+
"bos_token_id": 49406,
|
19 |
"chunk_size_feed_forward": 0,
|
20 |
"cross_attention_hidden_size": null,
|
21 |
"decoder_start_token_id": null,
|
|
|
24 |
"dropout": 0.0,
|
25 |
"early_stopping": false,
|
26 |
"encoder_no_repeat_ngram_size": 0,
|
27 |
+
"eos_token_id": 49407,
|
28 |
"exponential_decay_length_penalty": null,
|
29 |
"finetuning_task": null,
|
30 |
"forced_bos_token_id": null,
|
|
|
80 |
"top_p": 1.0,
|
81 |
"torch_dtype": null,
|
82 |
"torchscript": false,
|
83 |
+
"transformers_version": "4.31.0",
|
84 |
"typical_p": 1.0,
|
85 |
"use_bfloat16": false,
|
86 |
"vocab_size": 49408
|
87 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
"torch_dtype": "float32",
|
89 |
"transformers_version": null,
|
90 |
"vision_config": {
|
|
|
161 |
"top_p": 1.0,
|
162 |
"torch_dtype": null,
|
163 |
"torchscript": false,
|
164 |
+
"transformers_version": "4.31.0",
|
165 |
"typical_p": 1.0,
|
166 |
"use_bfloat16": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
}
|
168 |
}
|
safety_checker/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:753acd54aa6d288d6c0ce9d51468eb28f495fcbaacf0edf755fa5fc7ce678cd9
|
3 |
+
size 1216062333
|
text_encoder/config.json
CHANGED
@@ -19,6 +19,6 @@
|
|
19 |
"pad_token_id": 1,
|
20 |
"projection_dim": 768,
|
21 |
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.
|
23 |
"vocab_size": 49408
|
24 |
}
|
|
|
19 |
"pad_token_id": 1,
|
20 |
"projection_dim": 768,
|
21 |
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.31.0",
|
23 |
"vocab_size": 49408
|
24 |
}
|
text_encoder/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38a67003cd791d4fc008ae1fd24615b8b168f83cc8e853b746a7ec7bb3d64f42
|
3 |
+
size 492306077
|
tokenizer/tokenizer_config.json
CHANGED
@@ -8,6 +8,7 @@
|
|
8 |
"rstrip": false,
|
9 |
"single_word": false
|
10 |
},
|
|
|
11 |
"do_lower_case": true,
|
12 |
"eos_token": {
|
13 |
"__type": "AddedToken",
|
@@ -19,9 +20,7 @@
|
|
19 |
},
|
20 |
"errors": "replace",
|
21 |
"model_max_length": 77,
|
22 |
-
"name_or_path": "openai/clip-vit-large-patch14",
|
23 |
"pad_token": "<|endoftext|>",
|
24 |
-
"special_tokens_map_file": "./special_tokens_map.json",
|
25 |
"tokenizer_class": "CLIPTokenizer",
|
26 |
"unk_token": {
|
27 |
"__type": "AddedToken",
|
|
|
8 |
"rstrip": false,
|
9 |
"single_word": false
|
10 |
},
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
"do_lower_case": true,
|
13 |
"eos_token": {
|
14 |
"__type": "AddedToken",
|
|
|
20 |
},
|
21 |
"errors": "replace",
|
22 |
"model_max_length": 77,
|
|
|
23 |
"pad_token": "<|endoftext|>",
|
|
|
24 |
"tokenizer_class": "CLIPTokenizer",
|
25 |
"unk_token": {
|
26 |
"__type": "AddedToken",
|