Upload 2 files
Browse files- configuration_retnet.py +122 -0
- modeling_retnet.py +1491 -0
configuration_retnet.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/syncdoth/RetNet/blob/main/retnet/configuration_retnet.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
import json
|
5 |
+
|
6 |
+
from transformers.configuration_utils import PretrainedConfig
|
7 |
+
|
8 |
+
|
9 |
+
def load_config_from_json(config_file):
|
10 |
+
with open(config_file, "r") as f:
|
11 |
+
config = json.load(f)
|
12 |
+
config = RetNetConfig.from_dict(config)
|
13 |
+
return config
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class RetNetConfig(PretrainedConfig):
|
18 |
+
model_type = "retnet"
|
19 |
+
initializer_range: float = 0.02
|
20 |
+
activation_fn: str = "gelu"
|
21 |
+
dropout: float = 0.0 # dropout probability
|
22 |
+
activation_dropout: float = 0.0 # dropout probability after activation in FFN.
|
23 |
+
drop_path_rate: float = 0.0
|
24 |
+
decoder_embed_dim: int = 768 # decoder embedding dimension
|
25 |
+
decoder_value_embed_dim: int = 1280 # decoder value embedding dimension
|
26 |
+
decoder_ffn_embed_dim: int = 1280 # decoder embedding dimension for FFN
|
27 |
+
decoder_layers: int = 12 # num decoder layers
|
28 |
+
decoder_retention_heads: int = 3 # num decoder retention heads
|
29 |
+
decoder_normalize_before: bool = True # apply layernorm before each decoder block
|
30 |
+
layernorm_embedding: bool = False # add layernorm to embedding
|
31 |
+
no_scale_embedding: bool = True # if True, dont scale embeddings
|
32 |
+
recurrent_chunk_size: int = 512
|
33 |
+
use_lm_decay: bool = False
|
34 |
+
use_glu: bool = True # use GLU instead of FFN
|
35 |
+
z_loss_coeff: float = 0.0 # coefficient for z loss: TODO: 1e-4
|
36 |
+
deepnorm: bool = False
|
37 |
+
subln: bool = True
|
38 |
+
use_ffn_rms_norm: bool = False
|
39 |
+
layernorm_eps: float = 1e-6
|
40 |
+
tie_word_embeddings: bool = False
|
41 |
+
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
vocab_size: int = 50257,
|
45 |
+
initializer_range: float = 0.02,
|
46 |
+
is_decoder: bool = True,
|
47 |
+
pad_token_id: int = 0,
|
48 |
+
eos_token_id: int = 0,
|
49 |
+
output_retentions: bool = False,
|
50 |
+
use_cache: bool = True,
|
51 |
+
forward_impl: str = "parallel",
|
52 |
+
activation_fn: str = "gelu",
|
53 |
+
dropout: float = 0.0, # dropout probability
|
54 |
+
activation_dropout: float = 0.0, # dropout probability after activation in FFN.
|
55 |
+
drop_path_rate: float = 0.0,
|
56 |
+
decoder_embed_dim: int = 768, # decoder embedding dimension
|
57 |
+
decoder_value_embed_dim: int = 1280, # decoder value embedding dimension
|
58 |
+
decoder_ffn_embed_dim: int = 1280, # decoder embedding dimension for FFN
|
59 |
+
decoder_layers: int = 12, # num decoder layers
|
60 |
+
decoder_retention_heads: int = 3, # num decoder retention heads
|
61 |
+
decoder_normalize_before: bool = True, # apply layernorm before each decoder block
|
62 |
+
layernorm_embedding: bool = False, # add layernorm to embedding
|
63 |
+
no_scale_embedding: bool = True, # if True, dont scale embeddings
|
64 |
+
recurrent_chunk_size: int = 512,
|
65 |
+
use_glu: bool = True, # use GLU instead of FFN
|
66 |
+
z_loss_coeff: float = 0.0, # coefficient for z loss: TODO: 1e-4
|
67 |
+
use_lm_decay: bool = False,
|
68 |
+
deepnorm: bool = False,
|
69 |
+
subln: bool = True,
|
70 |
+
use_ffn_rms_norm: bool = False, # use RMSNorm instead of LayerNorm in FFN
|
71 |
+
layernorm_eps: float = 1e-6,
|
72 |
+
tie_word_embeddings: bool = False,
|
73 |
+
**kwargs
|
74 |
+
):
|
75 |
+
self.vocab_size = vocab_size
|
76 |
+
self.initializer_range = initializer_range
|
77 |
+
self.output_retentions = output_retentions
|
78 |
+
self.use_lm_decay = use_lm_decay
|
79 |
+
self.use_glu = use_glu
|
80 |
+
self.z_loss_coeff = z_loss_coeff
|
81 |
+
# size related
|
82 |
+
self.decoder_embed_dim = decoder_embed_dim
|
83 |
+
self.decoder_value_embed_dim = decoder_value_embed_dim
|
84 |
+
self.decoder_retention_heads = decoder_retention_heads
|
85 |
+
self.decoder_ffn_embed_dim = decoder_ffn_embed_dim
|
86 |
+
self.decoder_layers = decoder_layers
|
87 |
+
# normalization related
|
88 |
+
self.decoder_normalize_before = decoder_normalize_before
|
89 |
+
self.activation_fn = activation_fn
|
90 |
+
self.dropout = dropout
|
91 |
+
self.drop_path_rate = drop_path_rate
|
92 |
+
self.activation_dropout = activation_dropout
|
93 |
+
self.no_scale_embedding = no_scale_embedding
|
94 |
+
self.layernorm_embedding = layernorm_embedding
|
95 |
+
self.deepnorm = deepnorm
|
96 |
+
self.subln = subln
|
97 |
+
self.use_ffn_rms_norm = use_ffn_rms_norm
|
98 |
+
self.layernorm_eps = layernorm_eps
|
99 |
+
# Blockwise
|
100 |
+
self.recurrent_chunk_size = recurrent_chunk_size
|
101 |
+
self.forward_impl = forward_impl
|
102 |
+
|
103 |
+
if self.deepnorm:
|
104 |
+
self.decoder_normalize_before = False
|
105 |
+
self.subln = False
|
106 |
+
if self.subln:
|
107 |
+
self.decoder_normalize_before = True
|
108 |
+
self.deepnorm = False
|
109 |
+
|
110 |
+
super().__init__(
|
111 |
+
is_decoder=is_decoder,
|
112 |
+
pad_token_id=pad_token_id,
|
113 |
+
eos_token_id=eos_token_id,
|
114 |
+
use_cache=use_cache,
|
115 |
+
tie_word_embeddings=tie_word_embeddings,
|
116 |
+
**kwargs
|
117 |
+
)
|
118 |
+
|
119 |
+
def override(self, args):
|
120 |
+
for hp in self.__dict__.keys():
|
121 |
+
if getattr(args, hp, None) is not None:
|
122 |
+
self.__dict__[hp] = getattr(args, hp, None)
|
modeling_retnet.py
ADDED
@@ -0,0 +1,1491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/syncdoth/RetNet/blob/main/retnet/modeling_retnet.py
|
2 |
+
|
3 |
+
import math
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Dict, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
14 |
+
from transformers import top_k_top_p_filtering
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import ModelOutput, SequenceClassifierOutputWithPast
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_retnet import RetNetConfig
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
# helper functions
|
26 |
+
def split_heads(tensors, bsz, seqlen, num_heads):
|
27 |
+
assert isinstance(tensors, (tuple, list))
|
28 |
+
return [x.view(bsz, seqlen, num_heads, -1).transpose(1, 2) for x in tensors]
|
29 |
+
|
30 |
+
|
31 |
+
def rotate_every_two(x):
|
32 |
+
x1 = x[:, :, :, ::2]
|
33 |
+
x2 = x[:, :, :, 1::2]
|
34 |
+
x = torch.stack((-x2, x1), dim=-1)
|
35 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\
|
36 |
+
|
37 |
+
|
38 |
+
def theta_shift(x, sin, cos):
|
39 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
40 |
+
|
41 |
+
|
42 |
+
def get_activation_fn(activation):
|
43 |
+
return ACT2FN[activation]
|
44 |
+
|
45 |
+
|
46 |
+
# Copied from https://github.com/huggingface/pytorch-image-models/blob/bbe798317fb26f063c18279827c038058e376479/timm/layers/drop.py#L137C1-L154C29
|
47 |
+
def drop_path(
|
48 |
+
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
|
49 |
+
):
|
50 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
51 |
+
|
52 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
53 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
54 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
55 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
56 |
+
'survival rate' as the argument.
|
57 |
+
|
58 |
+
"""
|
59 |
+
if drop_prob == 0.0 or not training:
|
60 |
+
return x
|
61 |
+
keep_prob = 1 - drop_prob
|
62 |
+
shape = (x.shape[0],) + (1,) * (
|
63 |
+
x.ndim - 1
|
64 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
65 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
66 |
+
if keep_prob > 0.0 and scale_by_keep:
|
67 |
+
random_tensor.div_(keep_prob)
|
68 |
+
return x * random_tensor
|
69 |
+
|
70 |
+
|
71 |
+
class RMSNorm(nn.Module):
|
72 |
+
def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine=True):
|
73 |
+
super().__init__()
|
74 |
+
self.normalized_shape = dim
|
75 |
+
self.eps = eps
|
76 |
+
self.elementwise_affine = elementwise_affine
|
77 |
+
if self.elementwise_affine:
|
78 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
79 |
+
else:
|
80 |
+
self.register_parameter("weight", None)
|
81 |
+
|
82 |
+
def _norm(self, x):
|
83 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
output = self._norm(x.float()).type_as(x)
|
87 |
+
if self.weight is not None:
|
88 |
+
output = output * self.weight
|
89 |
+
return output
|
90 |
+
|
91 |
+
|
92 |
+
try:
|
93 |
+
from apex.normalization import FusedRMSNorm
|
94 |
+
|
95 |
+
RMSNorm = FusedRMSNorm # noqa
|
96 |
+
|
97 |
+
logger.info(
|
98 |
+
"Discovered apex.normalization.FusedRMSNorm - will use it instead of RMSNorm"
|
99 |
+
)
|
100 |
+
except ImportError:
|
101 |
+
# using the normal RMSNorm
|
102 |
+
pass
|
103 |
+
except Exception:
|
104 |
+
logger.warning("discovered apex but it failed to load, falling back to RMSNorm")
|
105 |
+
pass
|
106 |
+
|
107 |
+
|
108 |
+
class RetNetRelPos(nn.Module):
|
109 |
+
def __init__(self, config: RetNetConfig):
|
110 |
+
super().__init__()
|
111 |
+
self.config = config
|
112 |
+
num_heads = config.decoder_retention_heads
|
113 |
+
|
114 |
+
angle = 1.0 / (
|
115 |
+
10000 ** torch.linspace(0, 1, config.decoder_embed_dim // num_heads // 2)
|
116 |
+
)
|
117 |
+
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
|
118 |
+
# decay (gamma)
|
119 |
+
if config.use_lm_decay:
|
120 |
+
# NOTE: alternative way described in the paper
|
121 |
+
s = torch.log(torch.tensor(1 / 32))
|
122 |
+
e = torch.log(torch.tensor(1 / 512))
|
123 |
+
decay = torch.log(1 - torch.exp(torch.linspace(s, e, num_heads))) # [h,]
|
124 |
+
else:
|
125 |
+
decay = torch.log(
|
126 |
+
1 - 2 ** (-5 - torch.arange(num_heads, dtype=torch.float))
|
127 |
+
)
|
128 |
+
self.register_buffer("angle", angle)
|
129 |
+
self.register_buffer("decay", decay)
|
130 |
+
self.recurrent_chunk_size = config.recurrent_chunk_size
|
131 |
+
|
132 |
+
def forward(
|
133 |
+
self,
|
134 |
+
slen,
|
135 |
+
forward_impl="parallel",
|
136 |
+
recurrent_chunk_size=None,
|
137 |
+
retention_mask=None,
|
138 |
+
get_decay_scale=True,
|
139 |
+
):
|
140 |
+
if forward_impl == "recurrent":
|
141 |
+
sin = torch.sin(self.angle * (slen - 1))
|
142 |
+
cos = torch.cos(self.angle * (slen - 1))
|
143 |
+
retention_rel_pos = ((sin, cos), self.decay.view(1, -1, 1, 1).exp())
|
144 |
+
elif forward_impl == "chunkwise":
|
145 |
+
if recurrent_chunk_size is None:
|
146 |
+
recurrent_chunk_size = self.recurrent_chunk_size
|
147 |
+
index = torch.arange(slen).to(self.decay)
|
148 |
+
sin = torch.sin(index[:, None] * self.angle[None, :])
|
149 |
+
cos = torch.cos(index[:, None] * self.angle[None, :])
|
150 |
+
|
151 |
+
block_index = torch.arange(recurrent_chunk_size).to(self.decay)
|
152 |
+
mask = torch.tril(
|
153 |
+
torch.ones(recurrent_chunk_size, recurrent_chunk_size)
|
154 |
+
).to(self.decay)
|
155 |
+
mask = torch.masked_fill(
|
156 |
+
block_index[:, None] - block_index[None, :], ~mask.bool(), float("inf")
|
157 |
+
)
|
158 |
+
mask = torch.exp(mask * self.decay[:, None, None])
|
159 |
+
mask = torch.nan_to_num(mask)
|
160 |
+
mask = mask.unsqueeze(0) # [1, h, t, t]
|
161 |
+
# TODO: need to handle retention_mask
|
162 |
+
# scaling
|
163 |
+
value_inner_decay = mask[:, :, -1] / mask[:, :, -1].sum(
|
164 |
+
dim=-1, keepdim=True
|
165 |
+
)
|
166 |
+
value_inner_decay = value_inner_decay.unsqueeze(-1)
|
167 |
+
scale = mask.sum(dim=-1, keepdim=True).sqrt()
|
168 |
+
inner_mask = mask / scale
|
169 |
+
|
170 |
+
cross_decay = torch.exp(self.decay * recurrent_chunk_size)
|
171 |
+
query_inner_decay = torch.exp(self.decay[:, None] * (block_index + 1))
|
172 |
+
cross_decay = cross_decay[None, :, None, None]
|
173 |
+
query_inner_decay = query_inner_decay[None, :, :, None] / (
|
174 |
+
scale / mask[:, :, -1].sum(dim=-1)[:, :, None, None]
|
175 |
+
)
|
176 |
+
# decay_scale (used for kv cache)
|
177 |
+
if get_decay_scale:
|
178 |
+
decay_scale = self.compute_decay_scale(slen, retention_mask)
|
179 |
+
else:
|
180 |
+
decay_scale = None
|
181 |
+
retention_rel_pos = (
|
182 |
+
(sin, cos),
|
183 |
+
(
|
184 |
+
inner_mask,
|
185 |
+
cross_decay,
|
186 |
+
query_inner_decay,
|
187 |
+
value_inner_decay,
|
188 |
+
decay_scale,
|
189 |
+
),
|
190 |
+
)
|
191 |
+
else: # parallel
|
192 |
+
index = torch.arange(slen).to(self.decay)
|
193 |
+
sin = torch.sin(index[:, None] * self.angle[None, :])
|
194 |
+
cos = torch.cos(index[:, None] * self.angle[None, :])
|
195 |
+
mask = torch.tril(torch.ones(slen, slen)).to(self.decay)
|
196 |
+
mask = torch.masked_fill(
|
197 |
+
index[:, None] - index[None, :], ~mask.bool(), float("inf")
|
198 |
+
)
|
199 |
+
mask = torch.exp(mask * self.decay[:, None, None])
|
200 |
+
mask = torch.nan_to_num(mask)
|
201 |
+
mask = mask.unsqueeze(0) # [1, h, t, t]
|
202 |
+
if retention_mask is not None:
|
203 |
+
# this is required for left padding
|
204 |
+
mask = mask * retention_mask.float().view(-1, 1, 1, slen).to(mask)
|
205 |
+
|
206 |
+
# scaling
|
207 |
+
mask = mask / mask.sum(dim=-1, keepdim=True).sqrt()
|
208 |
+
mask = torch.nan_to_num(mask, nan=0.0)
|
209 |
+
# decay_scale (used for kv cache)
|
210 |
+
if get_decay_scale:
|
211 |
+
decay_scale = self.compute_decay_scale(slen, retention_mask)
|
212 |
+
else:
|
213 |
+
decay_scale = None
|
214 |
+
# mask processing for intra decay
|
215 |
+
if retention_mask is not None:
|
216 |
+
max_non_zero = (
|
217 |
+
torch.cumsum(retention_mask, dim=-1).max(dim=-1).indices
|
218 |
+
) # [b,]
|
219 |
+
intra_decay = mask[range(mask.shape[0]), :, max_non_zero]
|
220 |
+
else:
|
221 |
+
intra_decay = mask[:, :, -1]
|
222 |
+
|
223 |
+
retention_rel_pos = ((sin, cos), (mask, intra_decay, decay_scale))
|
224 |
+
|
225 |
+
return retention_rel_pos
|
226 |
+
|
227 |
+
def compute_decay_scale(self, slen, retention_mask=None):
|
228 |
+
exponent = torch.arange(slen, device=self.decay.device).float()
|
229 |
+
decay_scale = self.decay.exp().view(-1, 1) ** exponent.view(1, -1) # [h, t]
|
230 |
+
if retention_mask is not None:
|
231 |
+
seqlen = retention_mask.sum(dim=-1) # [b,]
|
232 |
+
bsz = seqlen.size(0)
|
233 |
+
decay_scale = decay_scale.unsqueeze(0).repeat(bsz, 1, 1) # [b, h, t]
|
234 |
+
for i, pos in enumerate(seqlen):
|
235 |
+
# the formula for decay_scale is `sum(gamma^i) for i in [0, slen).`
|
236 |
+
# Since the retention_mask is 0 for padding, we can set the decay_scale
|
237 |
+
# to 0 for the padding positions.
|
238 |
+
decay_scale[i, :, pos.item() :] = 0
|
239 |
+
else:
|
240 |
+
bsz = 1
|
241 |
+
decay_scale = decay_scale.sum(-1).view(bsz, -1, 1, 1) # [b, h, 1, 1]
|
242 |
+
return decay_scale
|
243 |
+
|
244 |
+
|
245 |
+
class MultiScaleRetention(nn.Module):
|
246 |
+
def __init__(
|
247 |
+
self,
|
248 |
+
config: RetNetConfig,
|
249 |
+
gate_fn="swish",
|
250 |
+
use_bias=False,
|
251 |
+
tensor_parallel=False,
|
252 |
+
):
|
253 |
+
super().__init__()
|
254 |
+
self.config = config
|
255 |
+
self.embed_dim = config.decoder_embed_dim
|
256 |
+
self.value_dim = config.decoder_value_embed_dim
|
257 |
+
self.num_heads = config.decoder_retention_heads
|
258 |
+
self.head_dim = self.value_dim // self.num_heads
|
259 |
+
self.key_dim = self.embed_dim // self.num_heads
|
260 |
+
self.scaling = self.key_dim**-0.5
|
261 |
+
|
262 |
+
self.gate_fn = get_activation_fn(activation=str(gate_fn))
|
263 |
+
|
264 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=use_bias)
|
265 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=use_bias)
|
266 |
+
self.v_proj = nn.Linear(self.embed_dim, self.value_dim, bias=use_bias)
|
267 |
+
self.g_proj = nn.Linear(self.embed_dim, self.value_dim, bias=use_bias)
|
268 |
+
|
269 |
+
self.out_proj = nn.Linear(self.value_dim, self.embed_dim, bias=use_bias)
|
270 |
+
|
271 |
+
self.group_norm = RMSNorm(
|
272 |
+
self.head_dim, eps=config.layernorm_eps, elementwise_affine=False
|
273 |
+
)
|
274 |
+
self.reset_parameters()
|
275 |
+
|
276 |
+
if tensor_parallel:
|
277 |
+
self.decay_proj = nn.Linear(self.num_heads, self.num_heads, bias=False)
|
278 |
+
else:
|
279 |
+
self.decay_proj = None
|
280 |
+
|
281 |
+
def reset_parameters(self):
|
282 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=2**-2.5)
|
283 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=2**-2.5)
|
284 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=2**-2.5)
|
285 |
+
nn.init.xavier_uniform_(self.g_proj.weight, gain=2**-2.5)
|
286 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
287 |
+
|
288 |
+
def parallel_retention(self, q, k, v, decay_mask):
|
289 |
+
"""
|
290 |
+
q, # bsz * num_head * len * qk_dim
|
291 |
+
k, # bsz * num_head * len * qk_dim
|
292 |
+
v, # bsz * num_head * len * v_dim
|
293 |
+
decay_mask, # (1 or bsz) * num_head * len * len
|
294 |
+
"""
|
295 |
+
decay_mask, intra_decay, scale = decay_mask
|
296 |
+
# just return retention_rel_pos projected
|
297 |
+
# TODO: for shardformer
|
298 |
+
if self.decay_proj is not None:
|
299 |
+
decay_mask = self.decay_proj(decay_mask.transpose(-1, -3)).transpose(-3, -1)
|
300 |
+
|
301 |
+
# [b, h, t, t]
|
302 |
+
retention = q @ k.transpose(-1, -2) # (scaled dot-product)
|
303 |
+
retention = retention * decay_mask
|
304 |
+
|
305 |
+
# invariant after normalization
|
306 |
+
retention = retention / retention.detach().sum(
|
307 |
+
dim=-1, keepdim=True
|
308 |
+
).abs().clamp(min=1)
|
309 |
+
|
310 |
+
output = retention.type_as(v) @ v # [b, h, t, v_dim / h]
|
311 |
+
output = output.transpose(1, 2) # [b, t, h, v_dim / h]
|
312 |
+
|
313 |
+
if self.training: # skip cache
|
314 |
+
return output, None, retention
|
315 |
+
|
316 |
+
if self.decay_proj is not None:
|
317 |
+
intra_decay = self.decay_proj(intra_decay.transpose(-1, -2)).transpose(
|
318 |
+
-2, -1
|
319 |
+
)
|
320 |
+
|
321 |
+
# kv cache: [b, h, t, v_dim, qk_dim]
|
322 |
+
current_kv = k.unsqueeze(-2) * v.unsqueeze(-1)
|
323 |
+
intra_decay = intra_decay[:, :, :, None, None] # [b, h, t, 1, 1]
|
324 |
+
current_kv = (current_kv * intra_decay).sum(2) # [b, h, v_dim, qk_dim]
|
325 |
+
|
326 |
+
cache = {"prev_key_value": current_kv, "scale": scale}
|
327 |
+
return output, cache, retention
|
328 |
+
|
329 |
+
def recurrent_retention(
|
330 |
+
self, q, k, v, decay, past_key_value=None, retention_mask=None
|
331 |
+
):
|
332 |
+
"""
|
333 |
+
q, k, v, # bsz * num_head * 1 * qkv_dim
|
334 |
+
past_key_value:
|
335 |
+
- "prev_key_value" # bsz * num_head * v_dim * qk_dim
|
336 |
+
- "scale" # (1 or bsz) * num_head * 1 * 1
|
337 |
+
decay # (1 or bsz) * num_head * 1 * 1
|
338 |
+
retention_mask # bsz * 1
|
339 |
+
"""
|
340 |
+
if retention_mask is not None:
|
341 |
+
retention_mask = retention_mask.float().view(-1, 1, 1, 1).to(decay)
|
342 |
+
else:
|
343 |
+
retention_mask = torch.ones(k.size(0), 1, 1, 1).to(decay)
|
344 |
+
# (b, h, v_dim, qk_dim)
|
345 |
+
current_kv = k * v.transpose(-1, -2) * retention_mask
|
346 |
+
|
347 |
+
if past_key_value is not None and "prev_key_value" in past_key_value:
|
348 |
+
prev_kv = past_key_value["prev_key_value"]
|
349 |
+
prev_scale = past_key_value["scale"]
|
350 |
+
scale = torch.where(retention_mask == 0, prev_scale, prev_scale * decay + 1)
|
351 |
+
# connect prev_kv and current_kv
|
352 |
+
# how much to decay prev_kv
|
353 |
+
decay_amount = prev_scale.sqrt() * decay / scale.sqrt()
|
354 |
+
decay_amount = torch.where(retention_mask == 0, 1, decay_amount)
|
355 |
+
prev_kv = prev_kv * decay_amount # decay prev_kv
|
356 |
+
current_kv = current_kv / scale.sqrt() # scale current_kv
|
357 |
+
current_kv = torch.nan_to_num(
|
358 |
+
current_kv, nan=0.0
|
359 |
+
) # remove nan, scale might be 0
|
360 |
+
|
361 |
+
current_kv = prev_kv + current_kv
|
362 |
+
else:
|
363 |
+
scale = torch.ones_like(decay)
|
364 |
+
# when retention_mask is 0 at the beginning, setting scale to 1 will
|
365 |
+
# make the first retention to use the padding incorrectly. Hence,
|
366 |
+
# setting it to 0 here. This is a little ugly, so we might want to
|
367 |
+
# change this later. TODO: improve
|
368 |
+
scale = torch.where(retention_mask == 0, torch.zeros_like(decay), scale)
|
369 |
+
|
370 |
+
output = torch.sum(q * current_kv, dim=3).unsqueeze(1) # (b, 1, h, d_v)
|
371 |
+
|
372 |
+
cache = {"prev_key_value": current_kv, "scale": scale}
|
373 |
+
return output, cache
|
374 |
+
|
375 |
+
def chunkwise_retention(self, q, k, v, decay_mask):
|
376 |
+
"""
|
377 |
+
q, k, v, # bsz * num_head * seqlen * qkv_dim
|
378 |
+
past_key_value:
|
379 |
+
- "prev_key_value" # bsz * num_head * v_dim * qk_dim
|
380 |
+
- "scale" # (1 or bsz) * num_head * 1 * 1
|
381 |
+
decay_mask, # 1 * num_head * chunk_size * chunk_size
|
382 |
+
cross_decay, # 1 * num_head * 1 * 1
|
383 |
+
inner_decay, # 1 * num_head * chunk_size * 1
|
384 |
+
"""
|
385 |
+
# TODO: not working properly
|
386 |
+
(
|
387 |
+
decay_mask,
|
388 |
+
cross_decay,
|
389 |
+
query_inner_decay,
|
390 |
+
value_inner_decay,
|
391 |
+
decay_scale,
|
392 |
+
) = decay_mask
|
393 |
+
bsz, _, tgt_len, _ = v.size()
|
394 |
+
chunk_len = decay_mask.size(-1)
|
395 |
+
assert tgt_len % chunk_len == 0
|
396 |
+
num_chunks = tgt_len // chunk_len
|
397 |
+
|
398 |
+
# [b, n_c, h, t_c, qkv_dim]
|
399 |
+
q = q.view(bsz, self.num_heads, num_chunks, chunk_len, self.key_dim).transpose(
|
400 |
+
1, 2
|
401 |
+
)
|
402 |
+
k = k.view(bsz, self.num_heads, num_chunks, chunk_len, self.key_dim).transpose(
|
403 |
+
1, 2
|
404 |
+
)
|
405 |
+
v = v.view(bsz, self.num_heads, num_chunks, chunk_len, self.head_dim).transpose(
|
406 |
+
1, 2
|
407 |
+
)
|
408 |
+
|
409 |
+
k_t = k.transpose(-1, -2)
|
410 |
+
|
411 |
+
qk_mat = q @ k_t # [b, n_c, h, t_c, t_c]
|
412 |
+
qk_mat = qk_mat * decay_mask.unsqueeze(1)
|
413 |
+
inner_scale = qk_mat.detach().abs().sum(dim=-1, keepdim=True).clamp(min=1)
|
414 |
+
qk_mat = qk_mat / inner_scale
|
415 |
+
# [b, n_c, h, t_c, v_dim]
|
416 |
+
inner_output = torch.matmul(qk_mat, v)
|
417 |
+
|
418 |
+
# reduce kv in one chunk
|
419 |
+
# [b, n_c, h, qk_dim, v_dim]
|
420 |
+
kv = k_t @ (v * value_inner_decay)
|
421 |
+
# kv = kv.view(bsz, num_chunks, self.num_heads, self.key_dim, self.head_dim)
|
422 |
+
|
423 |
+
kv_recurrent = []
|
424 |
+
cross_scale = []
|
425 |
+
kv_state = torch.zeros(bsz, self.num_heads, self.key_dim, self.head_dim).to(v)
|
426 |
+
kv_scale = torch.ones(bsz, self.num_heads, 1, 1).to(v)
|
427 |
+
|
428 |
+
# accumulate kv by loop
|
429 |
+
for i in range(num_chunks):
|
430 |
+
kv_recurrent.append(kv_state / kv_scale)
|
431 |
+
cross_scale.append(kv_scale)
|
432 |
+
kv_state = kv_state * cross_decay + kv[:, i]
|
433 |
+
kv_scale = (
|
434 |
+
kv_state.detach()
|
435 |
+
.abs()
|
436 |
+
.sum(dim=-2, keepdim=True)
|
437 |
+
.max(dim=-1, keepdim=True)
|
438 |
+
.values.clamp(min=1)
|
439 |
+
)
|
440 |
+
|
441 |
+
kv_recurrent = torch.stack(kv_recurrent, dim=1)
|
442 |
+
cross_scale = torch.stack(cross_scale, dim=1)
|
443 |
+
|
444 |
+
all_scale = torch.maximum(inner_scale, cross_scale)
|
445 |
+
align_inner_scale = all_scale / inner_scale
|
446 |
+
align_cross_scale = all_scale / cross_scale
|
447 |
+
|
448 |
+
cross_output = (q * query_inner_decay.unsqueeze(1)) @ kv_recurrent
|
449 |
+
output = inner_output / align_inner_scale + cross_output / align_cross_scale
|
450 |
+
output = output.transpose(2, 3) # [b, n_c, t_c, h, v_dim]
|
451 |
+
|
452 |
+
cache = {"prev_key_value": kv_state.transpose(-2, -1), "scale": decay_scale}
|
453 |
+
return output, cache
|
454 |
+
|
455 |
+
def forward(
|
456 |
+
self,
|
457 |
+
hidden_states: torch.Tensor,
|
458 |
+
rel_pos: Tuple[Tuple[torch.Tensor]],
|
459 |
+
retention_mask: Optional[torch.Tensor] = None,
|
460 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
461 |
+
forward_impl: str = "parallel",
|
462 |
+
output_retentions: Optional[bool] = False,
|
463 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
|
464 |
+
B, T, H = hidden_states.size()
|
465 |
+
(sin, cos), decay_mask = rel_pos
|
466 |
+
# projections
|
467 |
+
q = self.q_proj(hidden_states)
|
468 |
+
k = self.k_proj(hidden_states)
|
469 |
+
v = self.v_proj(hidden_states)
|
470 |
+
g = self.g_proj(hidden_states)
|
471 |
+
# multi-head
|
472 |
+
q, k, v = split_heads((q, k, v), B, T, self.num_heads)
|
473 |
+
k *= self.scaling # for scaled dot product
|
474 |
+
# rotate
|
475 |
+
# NOTE: theta_shift has bug with mps device.
|
476 |
+
qr = theta_shift(q, sin, cos)
|
477 |
+
kr = theta_shift(k, sin, cos)
|
478 |
+
|
479 |
+
# retention
|
480 |
+
if forward_impl == "parallel":
|
481 |
+
retention_out, curr_kv, retention_weights = self.parallel_retention(
|
482 |
+
qr, kr, v, decay_mask
|
483 |
+
)
|
484 |
+
elif forward_impl == "recurrent":
|
485 |
+
retention_out, curr_kv = self.recurrent_retention(
|
486 |
+
qr,
|
487 |
+
kr,
|
488 |
+
v,
|
489 |
+
decay_mask,
|
490 |
+
past_key_value=past_key_value,
|
491 |
+
retention_mask=retention_mask,
|
492 |
+
)
|
493 |
+
elif forward_impl == "chunkwise":
|
494 |
+
retention_out, curr_kv = self.chunkwise_retention(qr, kr, v, decay_mask)
|
495 |
+
else:
|
496 |
+
raise ValueError(f"forward_impl {forward_impl} not supported.")
|
497 |
+
|
498 |
+
# concaat heads
|
499 |
+
normed = self.group_norm(retention_out).reshape(B, T, self.value_dim)
|
500 |
+
# out gate & proj
|
501 |
+
out = self.gate_fn(g) * normed
|
502 |
+
out = self.out_proj(out.type_as(hidden_states))
|
503 |
+
|
504 |
+
outputs = (out, curr_kv)
|
505 |
+
if output_retentions:
|
506 |
+
outputs += (retention_weights,) if forward_impl == "parallel" else (None,)
|
507 |
+
return outputs
|
508 |
+
|
509 |
+
|
510 |
+
class FeedForwardNetwork(nn.Module):
|
511 |
+
def __init__(
|
512 |
+
self,
|
513 |
+
embed_dim,
|
514 |
+
ffn_dim,
|
515 |
+
activation_fn,
|
516 |
+
dropout,
|
517 |
+
activation_dropout,
|
518 |
+
layernorm_eps,
|
519 |
+
subln=False,
|
520 |
+
use_rms_norm=False,
|
521 |
+
):
|
522 |
+
super().__init__()
|
523 |
+
self.embed_dim = embed_dim
|
524 |
+
self.activation_fn = get_activation_fn(activation=str(activation_fn))
|
525 |
+
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
|
526 |
+
self.dropout_module = torch.nn.Dropout(dropout)
|
527 |
+
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
|
528 |
+
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
|
529 |
+
if subln:
|
530 |
+
if use_rms_norm:
|
531 |
+
self.ffn_layernorm = RMSNorm(ffn_dim, eps=layernorm_eps)
|
532 |
+
else:
|
533 |
+
self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps)
|
534 |
+
else:
|
535 |
+
self.ffn_layernorm = None
|
536 |
+
|
537 |
+
def reset_parameters(self):
|
538 |
+
self.fc1.reset_parameters()
|
539 |
+
self.fc2.reset_parameters()
|
540 |
+
if self.ffn_layernorm is not None:
|
541 |
+
self.ffn_layernorm.reset_parameters()
|
542 |
+
|
543 |
+
def forward(self, x):
|
544 |
+
x_shape = x.shape
|
545 |
+
x = x.reshape(-1, x.size(-1))
|
546 |
+
x = self.fc1(x)
|
547 |
+
x = self.activation_fn(x.float()).type_as(x)
|
548 |
+
x = self.activation_dropout_module(x)
|
549 |
+
if self.ffn_layernorm is not None:
|
550 |
+
x = self.ffn_layernorm(x)
|
551 |
+
x = self.fc2(x)
|
552 |
+
x = x.view(x_shape)
|
553 |
+
x = self.dropout_module(x)
|
554 |
+
return x
|
555 |
+
|
556 |
+
|
557 |
+
class GLU(nn.Module):
|
558 |
+
def __init__(
|
559 |
+
self,
|
560 |
+
embed_dim,
|
561 |
+
ffn_dim,
|
562 |
+
activation_fn,
|
563 |
+
dropout,
|
564 |
+
activation_dropout,
|
565 |
+
):
|
566 |
+
super().__init__()
|
567 |
+
self.embed_dim = embed_dim
|
568 |
+
self.activation_fn = get_activation_fn(activation=str(activation_fn))
|
569 |
+
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
|
570 |
+
self.dropout_module = torch.nn.Dropout(dropout)
|
571 |
+
self.fc1 = nn.Linear(self.embed_dim, ffn_dim, bias=False)
|
572 |
+
self.fc2 = nn.Linear(ffn_dim, self.embed_dim, bias=False)
|
573 |
+
self.gate = nn.Linear(self.embed_dim, ffn_dim, bias=False)
|
574 |
+
|
575 |
+
def reset_parameters(self):
|
576 |
+
self.fc1.reset_parameters()
|
577 |
+
self.fc2.reset_parameters()
|
578 |
+
self.gate.reset_parameters()
|
579 |
+
|
580 |
+
def forward(self, x):
|
581 |
+
x_shape = x.shape
|
582 |
+
x = x.reshape(-1, x.size(-1))
|
583 |
+
g = self.gate(x)
|
584 |
+
x = self.fc1(x)
|
585 |
+
x = self.activation_fn(x.float()).type_as(x) * g
|
586 |
+
x = self.activation_dropout_module(x)
|
587 |
+
x = self.fc2(x)
|
588 |
+
x = x.view(x_shape)
|
589 |
+
x = self.dropout_module(x)
|
590 |
+
return x
|
591 |
+
|
592 |
+
|
593 |
+
class DropPath(nn.Module):
|
594 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
595 |
+
|
596 |
+
def __init__(self, drop_prob=None):
|
597 |
+
super(DropPath, self).__init__()
|
598 |
+
self.drop_prob = drop_prob
|
599 |
+
|
600 |
+
def forward(self, x):
|
601 |
+
return drop_path(x, self.drop_prob, self.training)
|
602 |
+
|
603 |
+
def extra_repr(self):
|
604 |
+
return "p={}".format(self.drop_prob)
|
605 |
+
|
606 |
+
|
607 |
+
class RetNetDecoderLayer(nn.Module):
|
608 |
+
def __init__(self, config: RetNetConfig, depth: int, tensor_parallel: bool = False):
|
609 |
+
super().__init__()
|
610 |
+
self.config = config
|
611 |
+
self.embed_dim = config.decoder_embed_dim
|
612 |
+
self.dropout_module = torch.nn.Dropout(config.dropout)
|
613 |
+
|
614 |
+
if config.drop_path_rate > 0:
|
615 |
+
drop_path_prob = np.linspace(
|
616 |
+
0, config.drop_path_rate, config.decoder_layers
|
617 |
+
)[depth]
|
618 |
+
self.drop_path = DropPath(drop_path_prob)
|
619 |
+
else:
|
620 |
+
self.drop_path = None
|
621 |
+
|
622 |
+
self.retention = MultiScaleRetention(
|
623 |
+
config, use_bias=False, tensor_parallel=tensor_parallel
|
624 |
+
)
|
625 |
+
|
626 |
+
self.normalize_before = config.decoder_normalize_before
|
627 |
+
|
628 |
+
self.retention_layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
|
629 |
+
|
630 |
+
self.ffn_dim = config.decoder_ffn_embed_dim
|
631 |
+
|
632 |
+
self.ffn = self.build_ffn()
|
633 |
+
|
634 |
+
self.final_layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
|
635 |
+
|
636 |
+
if config.deepnorm:
|
637 |
+
self.alpha = math.pow(2.0 * config.decoder_layers, 0.25)
|
638 |
+
else:
|
639 |
+
self.alpha = 1.0
|
640 |
+
|
641 |
+
def build_ffn(self):
|
642 |
+
if self.config.use_glu:
|
643 |
+
return GLU(
|
644 |
+
self.embed_dim,
|
645 |
+
self.ffn_dim,
|
646 |
+
self.config.activation_fn,
|
647 |
+
self.config.dropout,
|
648 |
+
self.config.activation_dropout,
|
649 |
+
)
|
650 |
+
else:
|
651 |
+
return FeedForwardNetwork(
|
652 |
+
self.embed_dim,
|
653 |
+
self.ffn_dim,
|
654 |
+
self.config.activation_fn,
|
655 |
+
self.config.dropout,
|
656 |
+
self.config.activation_dropout,
|
657 |
+
self.config.layernorm_eps,
|
658 |
+
self.config.subln,
|
659 |
+
self.config.use_ffn_rms_norm,
|
660 |
+
)
|
661 |
+
|
662 |
+
def residual_connection(self, x, residual):
|
663 |
+
return residual * self.alpha + x
|
664 |
+
|
665 |
+
def forward(
|
666 |
+
self,
|
667 |
+
hidden_states: torch.Tensor,
|
668 |
+
retention_rel_pos: Tuple[Tuple[torch.Tensor]],
|
669 |
+
retention_mask: Optional[torch.Tensor] = None,
|
670 |
+
forward_impl: str = "parallel",
|
671 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
672 |
+
output_retentions: Optional[bool] = False,
|
673 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
|
674 |
+
residual = hidden_states
|
675 |
+
if self.normalize_before:
|
676 |
+
hidden_states = self.retention_layer_norm(hidden_states)
|
677 |
+
|
678 |
+
msr_outs = self.retention(
|
679 |
+
hidden_states,
|
680 |
+
retention_rel_pos,
|
681 |
+
retention_mask=retention_mask,
|
682 |
+
past_key_value=past_key_value,
|
683 |
+
forward_impl=forward_impl,
|
684 |
+
output_retentions=output_retentions,
|
685 |
+
)
|
686 |
+
hidden_states = msr_outs[0]
|
687 |
+
curr_kv = msr_outs[1]
|
688 |
+
|
689 |
+
hidden_states = self.dropout_module(hidden_states)
|
690 |
+
|
691 |
+
if self.drop_path is not None:
|
692 |
+
hidden_states = self.drop_path(hidden_states)
|
693 |
+
|
694 |
+
hidden_states = self.residual_connection(hidden_states, residual)
|
695 |
+
if not self.normalize_before:
|
696 |
+
hidden_states = self.retention_layer_norm(hidden_states)
|
697 |
+
|
698 |
+
residual = hidden_states
|
699 |
+
if self.normalize_before:
|
700 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
701 |
+
|
702 |
+
hidden_states = self.ffn(hidden_states)
|
703 |
+
|
704 |
+
if self.drop_path is not None:
|
705 |
+
hidden_states = self.drop_path(hidden_states)
|
706 |
+
|
707 |
+
hidden_states = self.residual_connection(hidden_states, residual)
|
708 |
+
if not self.normalize_before:
|
709 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
710 |
+
|
711 |
+
outputs = (hidden_states, curr_kv)
|
712 |
+
|
713 |
+
if output_retentions:
|
714 |
+
outputs += (msr_outs[2],)
|
715 |
+
return outputs
|
716 |
+
|
717 |
+
|
718 |
+
class RetNetPreTrainedModel(PreTrainedModel):
|
719 |
+
# copied from LlamaPretrainedModel
|
720 |
+
config_class = RetNetConfig
|
721 |
+
base_model_prefix = "model"
|
722 |
+
supports_gradient_checkpointing = True
|
723 |
+
_no_split_modules = ["RetNetDecoderLayer"]
|
724 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
725 |
+
|
726 |
+
def _init_weights(self, module):
|
727 |
+
"""
|
728 |
+
Following original retnet, weights are already initialized in their own
|
729 |
+
ways within their own init.
|
730 |
+
"""
|
731 |
+
pass
|
732 |
+
# below is copied from LlamaPretrainedModel
|
733 |
+
# std = self.config.initializer_range
|
734 |
+
# if isinstance(module, nn.Linear):
|
735 |
+
# module.weight.data.normal_(mean=0.0, std=std)
|
736 |
+
# if module.bias is not None:
|
737 |
+
# module.bias.data.zero_()
|
738 |
+
# elif isinstance(module, nn.Embedding):
|
739 |
+
# module.weight.data.normal_(mean=0.0, std=std)
|
740 |
+
# if module.padding_idx is not None:
|
741 |
+
# module.weight.data[module.padding_idx].zero_()
|
742 |
+
|
743 |
+
|
744 |
+
@dataclass
|
745 |
+
class RetNetOutputWithPast(ModelOutput):
|
746 |
+
"""
|
747 |
+
class for RetNet model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
748 |
+
|
749 |
+
config:
|
750 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, decoder_embed_dim)`):
|
751 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
752 |
+
|
753 |
+
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
754 |
+
decoder_embed_dim)` is output.
|
755 |
+
past_key_values (`List(Dict(str, torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
756 |
+
- "prev_key_value": shape=(bsz * num_head * v_dim * qk_dim)
|
757 |
+
- "scale": shape=((1 or bsz) * num_head * 1 * 1)
|
758 |
+
|
759 |
+
Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
|
760 |
+
that can be used (see `past_key_values` input) to speed up sequential decoding.
|
761 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
762 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
763 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, decoder_embed_dim)`.
|
764 |
+
|
765 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
766 |
+
retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
|
767 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
768 |
+
sequence_length)`.
|
769 |
+
|
770 |
+
Retentions weights, used for visualization.
|
771 |
+
|
772 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, for backward compatibility. Same as retentions.
|
773 |
+
"""
|
774 |
+
|
775 |
+
last_hidden_state: torch.FloatTensor = None
|
776 |
+
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None
|
777 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
778 |
+
retentions: Optional[Tuple[torch.FloatTensor]] = None
|
779 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
780 |
+
|
781 |
+
|
782 |
+
class RetNetModel(RetNetPreTrainedModel):
|
783 |
+
def __init__(
|
784 |
+
self,
|
785 |
+
config: RetNetConfig,
|
786 |
+
embed_tokens: nn.Embedding = None,
|
787 |
+
tensor_parallel: bool = False,
|
788 |
+
):
|
789 |
+
super().__init__(config)
|
790 |
+
self.config = config
|
791 |
+
|
792 |
+
self.dropout_module = torch.nn.Dropout(config.dropout)
|
793 |
+
|
794 |
+
self.embed_dim = config.decoder_embed_dim
|
795 |
+
self.embed_scale = (
|
796 |
+
1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
|
797 |
+
)
|
798 |
+
|
799 |
+
if embed_tokens is None:
|
800 |
+
embed_tokens = nn.Embedding(
|
801 |
+
config.vocab_size, config.decoder_embed_dim, config.pad_token_id
|
802 |
+
)
|
803 |
+
self.embed_tokens = embed_tokens
|
804 |
+
|
805 |
+
if config.layernorm_embedding:
|
806 |
+
self.layernorm_embedding = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
|
807 |
+
else:
|
808 |
+
self.layernorm_embedding = None
|
809 |
+
|
810 |
+
self.layers = nn.ModuleList([])
|
811 |
+
|
812 |
+
for i in range(config.decoder_layers):
|
813 |
+
self.layers.append(
|
814 |
+
RetNetDecoderLayer(config, depth=i, tensor_parallel=tensor_parallel)
|
815 |
+
)
|
816 |
+
|
817 |
+
self.decoder_layers = len(self.layers)
|
818 |
+
|
819 |
+
if config.decoder_normalize_before:
|
820 |
+
self.layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
|
821 |
+
else:
|
822 |
+
self.layer_norm = None
|
823 |
+
|
824 |
+
self.retnet_rel_pos = RetNetRelPos(config)
|
825 |
+
self.recurrent_chunk_size = config.recurrent_chunk_size
|
826 |
+
|
827 |
+
if config.deepnorm:
|
828 |
+
init_scale = math.pow(8.0 * config.decoder_layers, 0.25)
|
829 |
+
for name, p in self.named_parameters():
|
830 |
+
if (
|
831 |
+
"fc1" in name
|
832 |
+
or "fc2" in name
|
833 |
+
or "out_proj" in name
|
834 |
+
or "v_proj" in name
|
835 |
+
):
|
836 |
+
p.data.div_(init_scale)
|
837 |
+
|
838 |
+
if config.subln and not config.use_glu:
|
839 |
+
init_scale = math.sqrt(math.log(config.decoder_layers * 2))
|
840 |
+
for name, p in self.named_parameters():
|
841 |
+
if (
|
842 |
+
"fc1" in name
|
843 |
+
or "fc2" in name
|
844 |
+
or "out_proj" in name
|
845 |
+
or "v_proj" in name
|
846 |
+
):
|
847 |
+
p.data.mul_(init_scale)
|
848 |
+
|
849 |
+
self.gradient_checkpointing = False
|
850 |
+
self.post_init()
|
851 |
+
|
852 |
+
def get_input_embeddings(self):
|
853 |
+
return self.embed_tokens
|
854 |
+
|
855 |
+
def set_input_embeddings(self, value):
|
856 |
+
self.embed_tokens = value
|
857 |
+
|
858 |
+
def forward_embedding(
|
859 |
+
self,
|
860 |
+
input_ids,
|
861 |
+
forward_impl,
|
862 |
+
inputs_embeds=None,
|
863 |
+
past_key_values=None,
|
864 |
+
):
|
865 |
+
# Check if input_ids are within the range
|
866 |
+
if input_ids.max() >= self.config.vocab_size:
|
867 |
+
raise ValueError("All input_ids must be less than vocab_size")
|
868 |
+
|
869 |
+
# if past_key_values is not None:
|
870 |
+
if forward_impl == "recurrent":
|
871 |
+
input_ids = input_ids[:, -1:]
|
872 |
+
|
873 |
+
if inputs_embeds is None:
|
874 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
875 |
+
|
876 |
+
embed = self.embed_scale * inputs_embeds
|
877 |
+
|
878 |
+
if self.layernorm_embedding is not None:
|
879 |
+
embed = self.layernorm_embedding(embed)
|
880 |
+
|
881 |
+
embed = self.dropout_module(embed)
|
882 |
+
|
883 |
+
return embed
|
884 |
+
|
885 |
+
def forward(
|
886 |
+
self,
|
887 |
+
input_ids: torch.LongTensor = None,
|
888 |
+
retention_mask: Optional[torch.Tensor] = None,
|
889 |
+
attention_mask: Optional[torch.Tensor] = None,
|
890 |
+
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None,
|
891 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
892 |
+
output_retentions: Optional[bool] = None,
|
893 |
+
output_attentions: Optional[bool] = None,
|
894 |
+
output_hidden_states: Optional[bool] = None,
|
895 |
+
use_cache: Optional[bool] = None,
|
896 |
+
return_dict: Optional[bool] = None,
|
897 |
+
forward_impl: Optional[str] = "parallel",
|
898 |
+
recurrent_chunk_size: Optional[int] = None,
|
899 |
+
retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
|
900 |
+
) -> Union[Tuple, RetNetOutputWithPast]:
|
901 |
+
if output_retentions is None and output_attentions is not None:
|
902 |
+
output_retentions = output_attentions
|
903 |
+
output_retentions = (
|
904 |
+
output_retentions
|
905 |
+
if output_retentions is not None
|
906 |
+
else self.config.output_retentions
|
907 |
+
)
|
908 |
+
output_hidden_states = (
|
909 |
+
output_hidden_states
|
910 |
+
if output_hidden_states is not None
|
911 |
+
else self.config.output_hidden_states
|
912 |
+
)
|
913 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
914 |
+
|
915 |
+
return_dict = (
|
916 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
917 |
+
)
|
918 |
+
|
919 |
+
# retrieve input_ids and inputs_embeds
|
920 |
+
if input_ids is not None and inputs_embeds is not None:
|
921 |
+
raise ValueError(
|
922 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
923 |
+
)
|
924 |
+
elif input_ids is not None:
|
925 |
+
batch_size, seq_length = input_ids.shape
|
926 |
+
elif inputs_embeds is not None:
|
927 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
928 |
+
else:
|
929 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
930 |
+
|
931 |
+
# embed tokens
|
932 |
+
if inputs_embeds is None:
|
933 |
+
inputs_embeds = self.forward_embedding(
|
934 |
+
input_ids, forward_impl, inputs_embeds, past_key_values
|
935 |
+
)
|
936 |
+
|
937 |
+
if retention_mask is None and attention_mask is not None:
|
938 |
+
retention_mask = attention_mask
|
939 |
+
if retention_mask is not None and forward_impl == "recurrent":
|
940 |
+
retention_mask = retention_mask[:, -1:]
|
941 |
+
|
942 |
+
hidden_states = inputs_embeds
|
943 |
+
|
944 |
+
# handling chunking here
|
945 |
+
if recurrent_chunk_size is None:
|
946 |
+
recurrent_chunk_size = self.recurrent_chunk_size
|
947 |
+
need_pad_for_chunkwise = (
|
948 |
+
forward_impl == "chunkwise" and seq_length % recurrent_chunk_size != 0
|
949 |
+
)
|
950 |
+
if need_pad_for_chunkwise:
|
951 |
+
padding_len = recurrent_chunk_size - seq_length % recurrent_chunk_size
|
952 |
+
slen = seq_length + padding_len
|
953 |
+
hidden_states = F.pad(hidden_states, (0, 0, 0, padding_len))
|
954 |
+
else:
|
955 |
+
slen = seq_length
|
956 |
+
# relative position
|
957 |
+
if retention_rel_pos is None:
|
958 |
+
retention_rel_pos = self.retnet_rel_pos(
|
959 |
+
slen,
|
960 |
+
forward_impl=forward_impl,
|
961 |
+
recurrent_chunk_size=recurrent_chunk_size,
|
962 |
+
retention_mask=retention_mask,
|
963 |
+
get_decay_scale=not self.training,
|
964 |
+
)
|
965 |
+
|
966 |
+
# start running through the decoder layers
|
967 |
+
all_hidden_states = () if output_hidden_states else None
|
968 |
+
all_retentions = () if output_retentions else None
|
969 |
+
# layers * [bsz, num_head, qk_dim, decoder_embed_dim]
|
970 |
+
next_decoder_cache = () if use_cache else None
|
971 |
+
|
972 |
+
for idx, layer in enumerate(self.layers):
|
973 |
+
if output_hidden_states:
|
974 |
+
all_hidden_states += (hidden_states,)
|
975 |
+
past_key_value = (
|
976 |
+
past_key_values[idx] if past_key_values is not None else None
|
977 |
+
)
|
978 |
+
|
979 |
+
if self.gradient_checkpointing and self.training:
|
980 |
+
|
981 |
+
def create_custom_forward(module):
|
982 |
+
def custom_forward(*inputs):
|
983 |
+
return module(*inputs, output_retentions)
|
984 |
+
|
985 |
+
return custom_forward
|
986 |
+
|
987 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
988 |
+
create_custom_forward(layer),
|
989 |
+
hidden_states,
|
990 |
+
retention_rel_pos,
|
991 |
+
retention_mask,
|
992 |
+
forward_impl,
|
993 |
+
past_key_value,
|
994 |
+
)
|
995 |
+
else:
|
996 |
+
layer_outputs = layer(
|
997 |
+
hidden_states,
|
998 |
+
retention_rel_pos,
|
999 |
+
retention_mask=retention_mask,
|
1000 |
+
forward_impl=forward_impl,
|
1001 |
+
past_key_value=past_key_value,
|
1002 |
+
output_retentions=output_retentions,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
hidden_states = layer_outputs[0]
|
1006 |
+
|
1007 |
+
if use_cache:
|
1008 |
+
next_decoder_cache += (layer_outputs[1],)
|
1009 |
+
|
1010 |
+
if output_retentions:
|
1011 |
+
all_retentions += (layer_outputs[2],)
|
1012 |
+
|
1013 |
+
next_cache = next_decoder_cache if use_cache else None
|
1014 |
+
|
1015 |
+
if need_pad_for_chunkwise:
|
1016 |
+
hidden_states = hidden_states[:, :seq_length, :]
|
1017 |
+
|
1018 |
+
if self.layer_norm is not None:
|
1019 |
+
hidden_states = self.layer_norm(hidden_states)
|
1020 |
+
|
1021 |
+
# add hidden states from the last decoder layer
|
1022 |
+
if output_hidden_states:
|
1023 |
+
all_hidden_states += (hidden_states,)
|
1024 |
+
|
1025 |
+
if not return_dict:
|
1026 |
+
return tuple(
|
1027 |
+
v
|
1028 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_retentions]
|
1029 |
+
if v is not None
|
1030 |
+
)
|
1031 |
+
return RetNetOutputWithPast(
|
1032 |
+
last_hidden_state=hidden_states,
|
1033 |
+
past_key_values=next_cache,
|
1034 |
+
hidden_states=all_hidden_states,
|
1035 |
+
retentions=all_retentions,
|
1036 |
+
attentions=all_retentions,
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
|
1040 |
+
@dataclass
|
1041 |
+
class RetNetCausalLMOutputWithPast(ModelOutput):
|
1042 |
+
"""
|
1043 |
+
class for RetNet causal language model (or autoregressive) outputs.
|
1044 |
+
|
1045 |
+
config:
|
1046 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
1047 |
+
Language modeling loss (for next-token prediction).
|
1048 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
1049 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
1050 |
+
past_key_values (`List(Dict(str, torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1051 |
+
- "prev_key_value": shape=(bsz * num_head * v_dim * qk_dim)
|
1052 |
+
- "scale": shape=((1 or bsz) * num_head * 1 * 1)
|
1053 |
+
|
1054 |
+
Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
|
1055 |
+
that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1056 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1057 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
1058 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, decoder_embed_dim)`.
|
1059 |
+
|
1060 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
1061 |
+
retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
|
1062 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1063 |
+
sequence_length)`.
|
1064 |
+
|
1065 |
+
Retentions weights, used for visualization.
|
1066 |
+
|
1067 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, for backward compatibility. Same as retentions.
|
1068 |
+
"""
|
1069 |
+
|
1070 |
+
loss: Optional[torch.FloatTensor] = None
|
1071 |
+
logits: torch.FloatTensor = None
|
1072 |
+
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None
|
1073 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
1074 |
+
retentions: Optional[Tuple[torch.FloatTensor]] = None
|
1075 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
1076 |
+
|
1077 |
+
|
1078 |
+
class RetNetForCausalLM(RetNetPreTrainedModel):
|
1079 |
+
def __init__(
|
1080 |
+
self,
|
1081 |
+
config: RetNetConfig,
|
1082 |
+
embed_tokens: nn.Embedding = None,
|
1083 |
+
tensor_parallel: bool = False,
|
1084 |
+
) -> None:
|
1085 |
+
super().__init__(config)
|
1086 |
+
self.model = RetNetModel(
|
1087 |
+
config, embed_tokens=embed_tokens, tensor_parallel=tensor_parallel
|
1088 |
+
)
|
1089 |
+
self.lm_head = nn.Linear(
|
1090 |
+
config.decoder_embed_dim, config.vocab_size, bias=False
|
1091 |
+
)
|
1092 |
+
# init here
|
1093 |
+
torch.nn.init.normal_(
|
1094 |
+
self.lm_head.weight, mean=0, std=config.decoder_embed_dim**-0.5
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
self.post_init()
|
1098 |
+
|
1099 |
+
def get_input_embeddings(self):
|
1100 |
+
return self.model.embed_tokens
|
1101 |
+
|
1102 |
+
def set_input_embeddings(self, value):
|
1103 |
+
self.model.embed_tokens = value
|
1104 |
+
|
1105 |
+
def get_output_embeddings(self):
|
1106 |
+
return self.lm_head
|
1107 |
+
|
1108 |
+
def set_output_embeddings(self, new_embeddings):
|
1109 |
+
self.lm_head = new_embeddings
|
1110 |
+
|
1111 |
+
def set_decoder(self, decoder):
|
1112 |
+
self.model = decoder
|
1113 |
+
|
1114 |
+
def get_decoder(self):
|
1115 |
+
return self.model
|
1116 |
+
|
1117 |
+
def forward(
|
1118 |
+
self,
|
1119 |
+
input_ids: torch.LongTensor = None,
|
1120 |
+
retention_mask: Optional[torch.Tensor] = None,
|
1121 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1122 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1123 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1124 |
+
labels: Optional[torch.LongTensor] = None,
|
1125 |
+
use_cache: Optional[bool] = None,
|
1126 |
+
output_retentions: Optional[bool] = None,
|
1127 |
+
output_attentions: Optional[bool] = None,
|
1128 |
+
output_hidden_states: Optional[bool] = None,
|
1129 |
+
return_dict: Optional[bool] = None,
|
1130 |
+
forward_impl: Optional[str] = None,
|
1131 |
+
recurrent_chunk_size: Optional[int] = None,
|
1132 |
+
retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
|
1133 |
+
) -> Union[Tuple, RetNetCausalLMOutputWithPast]:
|
1134 |
+
if output_retentions is None and output_attentions is not None:
|
1135 |
+
output_retentions = output_attentions
|
1136 |
+
output_retentions = (
|
1137 |
+
output_retentions
|
1138 |
+
if output_retentions is not None
|
1139 |
+
else self.config.output_retentions
|
1140 |
+
)
|
1141 |
+
output_hidden_states = (
|
1142 |
+
output_hidden_states
|
1143 |
+
if output_hidden_states is not None
|
1144 |
+
else self.config.output_hidden_states
|
1145 |
+
)
|
1146 |
+
return_dict = (
|
1147 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1148 |
+
)
|
1149 |
+
forward_impl = (
|
1150 |
+
forward_impl if forward_impl is not None else self.config.forward_impl
|
1151 |
+
)
|
1152 |
+
recurrent_chunk_size = (
|
1153 |
+
recurrent_chunk_size
|
1154 |
+
if recurrent_chunk_size is not None
|
1155 |
+
else self.config.recurrent_chunk_size
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
if retention_mask is None and attention_mask is not None:
|
1159 |
+
retention_mask = attention_mask
|
1160 |
+
|
1161 |
+
outputs = self.model(
|
1162 |
+
input_ids,
|
1163 |
+
retention_mask=retention_mask,
|
1164 |
+
past_key_values=past_key_values,
|
1165 |
+
inputs_embeds=inputs_embeds,
|
1166 |
+
output_retentions=output_retentions,
|
1167 |
+
output_hidden_states=output_hidden_states,
|
1168 |
+
return_dict=return_dict,
|
1169 |
+
forward_impl=forward_impl,
|
1170 |
+
use_cache=use_cache,
|
1171 |
+
recurrent_chunk_size=recurrent_chunk_size,
|
1172 |
+
retention_rel_pos=retention_rel_pos,
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
hidden_states = outputs[0]
|
1176 |
+
logits = self.lm_head(hidden_states)
|
1177 |
+
|
1178 |
+
loss = None
|
1179 |
+
if labels is not None:
|
1180 |
+
# Shift so that tokens < n predict n
|
1181 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1182 |
+
shift_labels = labels[..., 1:].contiguous()
|
1183 |
+
# Flatten the tokens
|
1184 |
+
loss_fct = nn.CrossEntropyLoss()
|
1185 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1186 |
+
shift_labels = shift_labels.view(-1)
|
1187 |
+
# Enable model parallelism
|
1188 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1189 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1190 |
+
|
1191 |
+
if self.config.z_loss_coeff > 0:
|
1192 |
+
# z_loss from PaLM paper
|
1193 |
+
# z_loss = 1e-4 * log(log(z)), where z = sum(exp(logits))
|
1194 |
+
z_loss = torch.logsumexp(shift_logits, dim=-1).log().mean()
|
1195 |
+
loss += self.config.z_loss_coeff * z_loss
|
1196 |
+
|
1197 |
+
if not return_dict:
|
1198 |
+
output = (logits,) + outputs[1:]
|
1199 |
+
return (loss,) + output if loss is not None else output
|
1200 |
+
|
1201 |
+
return RetNetCausalLMOutputWithPast(
|
1202 |
+
loss=loss,
|
1203 |
+
logits=logits,
|
1204 |
+
past_key_values=outputs.past_key_values,
|
1205 |
+
hidden_states=outputs.hidden_states,
|
1206 |
+
retentions=outputs.retentions,
|
1207 |
+
attentions=outputs.retentions,
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
def _crop_past_key_values(model, past_key_values, maximum_length):
|
1211 |
+
"""Since retnet's kv do not have length, no need to crop. Just return"""
|
1212 |
+
return past_key_values
|
1213 |
+
|
1214 |
+
def prepare_inputs_for_generation(
|
1215 |
+
self,
|
1216 |
+
input_ids,
|
1217 |
+
past_key_values=None,
|
1218 |
+
attention_mask=None,
|
1219 |
+
inputs_embeds=None,
|
1220 |
+
**kwargs,
|
1221 |
+
):
|
1222 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1223 |
+
if inputs_embeds is not None and past_key_values is None:
|
1224 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1225 |
+
else:
|
1226 |
+
model_inputs = {"input_ids": input_ids}
|
1227 |
+
|
1228 |
+
forward_impl = kwargs.get("forward_impl", "parallel")
|
1229 |
+
if past_key_values is not None:
|
1230 |
+
forward_impl = "recurrent"
|
1231 |
+
|
1232 |
+
model_inputs.update(
|
1233 |
+
{
|
1234 |
+
"past_key_values": past_key_values,
|
1235 |
+
"use_cache": kwargs.get("use_cache"),
|
1236 |
+
"attention_mask": attention_mask,
|
1237 |
+
"forward_impl": forward_impl,
|
1238 |
+
}
|
1239 |
+
)
|
1240 |
+
return model_inputs
|
1241 |
+
|
1242 |
+
@staticmethod
|
1243 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1244 |
+
reordered_past = ()
|
1245 |
+
for layer_past in past_key_values: # dict
|
1246 |
+
layer_past_kv = layer_past["prev_key_value"] # [b, h, v_dim / h, qk_dim]
|
1247 |
+
layer_past_scale = layer_past["scale"] # [b, h, 1, 1]
|
1248 |
+
if layer_past_scale.size(0) > 1:
|
1249 |
+
# this means that retention_mask is not None, so the scale for
|
1250 |
+
# each batch is different. We need to select the correct scale then.
|
1251 |
+
# NOTE: during huggingface generate, it will generate attention_mask
|
1252 |
+
# if it is None, so this linke will always be true. Still, having
|
1253 |
+
# this line here for safety.
|
1254 |
+
layer_past_scale = layer_past_scale.index_select(0, beam_idx)
|
1255 |
+
reordered_past += (
|
1256 |
+
{
|
1257 |
+
"prev_key_value": layer_past_kv.index_select(0, beam_idx),
|
1258 |
+
"scale": layer_past_scale,
|
1259 |
+
},
|
1260 |
+
)
|
1261 |
+
return reordered_past
|
1262 |
+
|
1263 |
+
def sample_token(self, logit, do_sample=False, top_k=1, top_p=1.0, temperature=1.0):
|
1264 |
+
if not do_sample:
|
1265 |
+
return torch.argmax(logit, dim=-1, keepdim=True)
|
1266 |
+
filtered = top_k_top_p_filtering(logit / temperature, top_k=top_k, top_p=top_p)
|
1267 |
+
return torch.multinomial(torch.softmax(filtered, dim=-1), num_samples=1)
|
1268 |
+
|
1269 |
+
@torch.inference_mode()
|
1270 |
+
def custom_generate(
|
1271 |
+
self,
|
1272 |
+
input_ids: torch.LongTensor = None,
|
1273 |
+
retention_mask: Optional[torch.Tensor] = None,
|
1274 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1275 |
+
parallel_compute_prompt=True,
|
1276 |
+
max_new_tokens=20,
|
1277 |
+
bos_token_id=0,
|
1278 |
+
eos_token_id=0,
|
1279 |
+
do_sample=False,
|
1280 |
+
top_k=0,
|
1281 |
+
top_p=1.0,
|
1282 |
+
temperature=1.0,
|
1283 |
+
early_stopping=True,
|
1284 |
+
):
|
1285 |
+
if retention_mask is None and attention_mask is not None:
|
1286 |
+
retention_mask = attention_mask
|
1287 |
+
|
1288 |
+
if input_ids is not None:
|
1289 |
+
if input_ids.shape[1] == 1:
|
1290 |
+
past_key_values = None
|
1291 |
+
elif parallel_compute_prompt:
|
1292 |
+
ret_mask = (
|
1293 |
+
retention_mask[:, :-1] if retention_mask is not None else None
|
1294 |
+
)
|
1295 |
+
outputs = self(
|
1296 |
+
input_ids[:, :-1],
|
1297 |
+
retention_mask=ret_mask,
|
1298 |
+
forward_impl="parallel",
|
1299 |
+
return_dict=True,
|
1300 |
+
use_cache=True,
|
1301 |
+
)
|
1302 |
+
past_key_values = outputs.past_key_values
|
1303 |
+
else:
|
1304 |
+
past_key_values = None
|
1305 |
+
for p_i in range(input_ids.shape[1] - 1):
|
1306 |
+
ret_mask = (
|
1307 |
+
retention_mask[:, : p_i + 1]
|
1308 |
+
if retention_mask is not None
|
1309 |
+
else None
|
1310 |
+
)
|
1311 |
+
outputs = self(
|
1312 |
+
input_ids[:, : p_i + 1],
|
1313 |
+
retention_mask=ret_mask,
|
1314 |
+
forward_impl="recurrent",
|
1315 |
+
past_key_values=past_key_values,
|
1316 |
+
return_dict=True,
|
1317 |
+
use_cache=True,
|
1318 |
+
)
|
1319 |
+
past_key_values = outputs.past_key_values
|
1320 |
+
|
1321 |
+
generated = input_ids
|
1322 |
+
else:
|
1323 |
+
generated = torch.tensor([[bos_token_id]]).to(self.lm_head.weight.device)
|
1324 |
+
past_key_values = None
|
1325 |
+
|
1326 |
+
for i in range(max_new_tokens):
|
1327 |
+
outputs = self(
|
1328 |
+
generated,
|
1329 |
+
retention_mask=retention_mask,
|
1330 |
+
forward_impl="recurrent",
|
1331 |
+
past_key_values=past_key_values,
|
1332 |
+
use_cache=True,
|
1333 |
+
return_dict=True,
|
1334 |
+
)
|
1335 |
+
logit = outputs.logits[:, -1, :] # [batch_size, vocab_size]
|
1336 |
+
past_key_values = outputs.past_key_values
|
1337 |
+
token = self.sample_token(
|
1338 |
+
logit,
|
1339 |
+
do_sample=do_sample,
|
1340 |
+
top_k=top_k,
|
1341 |
+
top_p=top_p,
|
1342 |
+
temperature=temperature,
|
1343 |
+
)
|
1344 |
+
generated = torch.cat([generated, token], dim=-1)
|
1345 |
+
if retention_mask is not None:
|
1346 |
+
retention_mask = torch.cat(
|
1347 |
+
[retention_mask, torch.ones_like(token)], dim=-1
|
1348 |
+
)
|
1349 |
+
if early_stopping and (token == eos_token_id).all():
|
1350 |
+
break
|
1351 |
+
return generated
|
1352 |
+
|
1353 |
+
|
1354 |
+
class RetNetForSequenceClassification(RetNetPreTrainedModel):
|
1355 |
+
def __init__(self, config, tensor_parallel=False):
|
1356 |
+
super().__init__(config)
|
1357 |
+
self.num_labels = config.num_labels
|
1358 |
+
self.model = RetNetModel(config, tensor_parallel=tensor_parallel)
|
1359 |
+
self.score = nn.Linear(config.decoder_embed_dim, self.num_labels, bias=False)
|
1360 |
+
|
1361 |
+
# Initialize weights and apply final processing
|
1362 |
+
self.post_init()
|
1363 |
+
|
1364 |
+
def get_input_embeddings(self):
|
1365 |
+
return self.model.embed_tokens
|
1366 |
+
|
1367 |
+
def set_input_embeddings(self, value):
|
1368 |
+
self.model.embed_tokens = value
|
1369 |
+
|
1370 |
+
def forward(
|
1371 |
+
self,
|
1372 |
+
input_ids: torch.LongTensor = None,
|
1373 |
+
retention_mask: Optional[torch.Tensor] = None,
|
1374 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1375 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1376 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1377 |
+
labels: Optional[torch.LongTensor] = None,
|
1378 |
+
use_cache: Optional[bool] = None,
|
1379 |
+
output_retentions: Optional[bool] = None,
|
1380 |
+
output_attentions: Optional[bool] = None,
|
1381 |
+
output_hidden_states: Optional[bool] = None,
|
1382 |
+
return_dict: Optional[bool] = None,
|
1383 |
+
forward_impl: Optional[str] = None,
|
1384 |
+
recurrent_chunk_size: Optional[int] = None,
|
1385 |
+
retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
|
1386 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1387 |
+
if output_retentions is None and output_attentions is not None:
|
1388 |
+
output_retentions = output_attentions
|
1389 |
+
output_retentions = (
|
1390 |
+
output_retentions
|
1391 |
+
if output_retentions is not None
|
1392 |
+
else self.config.output_retentions
|
1393 |
+
)
|
1394 |
+
output_hidden_states = (
|
1395 |
+
output_hidden_states
|
1396 |
+
if output_hidden_states is not None
|
1397 |
+
else self.config.output_hidden_states
|
1398 |
+
)
|
1399 |
+
return_dict = (
|
1400 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1401 |
+
)
|
1402 |
+
forward_impl = (
|
1403 |
+
forward_impl if forward_impl is not None else self.config.forward_impl
|
1404 |
+
)
|
1405 |
+
recurrent_chunk_size = (
|
1406 |
+
recurrent_chunk_size
|
1407 |
+
if recurrent_chunk_size is not None
|
1408 |
+
else self.config.recurrent_chunk_size
|
1409 |
+
)
|
1410 |
+
|
1411 |
+
if retention_mask is None and attention_mask is not None:
|
1412 |
+
retention_mask = attention_mask
|
1413 |
+
|
1414 |
+
outputs = self.model(
|
1415 |
+
input_ids,
|
1416 |
+
retention_mask=retention_mask,
|
1417 |
+
past_key_values=past_key_values,
|
1418 |
+
inputs_embeds=inputs_embeds,
|
1419 |
+
output_retentions=output_retentions,
|
1420 |
+
output_hidden_states=output_hidden_states,
|
1421 |
+
return_dict=return_dict,
|
1422 |
+
forward_impl=forward_impl,
|
1423 |
+
use_cache=use_cache,
|
1424 |
+
recurrent_chunk_size=recurrent_chunk_size,
|
1425 |
+
retention_rel_pos=retention_rel_pos,
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
hidden_states = outputs[0]
|
1429 |
+
logits = self.score(hidden_states)
|
1430 |
+
|
1431 |
+
if input_ids is not None:
|
1432 |
+
batch_size = input_ids.shape[0]
|
1433 |
+
else:
|
1434 |
+
batch_size = inputs_embeds.shape[0]
|
1435 |
+
|
1436 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1437 |
+
raise ValueError(
|
1438 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
1439 |
+
)
|
1440 |
+
if self.config.pad_token_id is None:
|
1441 |
+
sequence_lengths = -1
|
1442 |
+
else:
|
1443 |
+
if input_ids is not None:
|
1444 |
+
sequence_lengths = (
|
1445 |
+
torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1
|
1446 |
+
).to(logits.device)
|
1447 |
+
else:
|
1448 |
+
sequence_lengths = -1
|
1449 |
+
|
1450 |
+
pooled_logits = logits[
|
1451 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1452 |
+
]
|
1453 |
+
|
1454 |
+
loss = None
|
1455 |
+
if labels is not None:
|
1456 |
+
labels = labels.to(logits.device)
|
1457 |
+
if self.config.problem_type is None:
|
1458 |
+
if self.num_labels == 1:
|
1459 |
+
self.config.problem_type = "regression"
|
1460 |
+
elif self.num_labels > 1 and (
|
1461 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1462 |
+
):
|
1463 |
+
self.config.problem_type = "single_label_classification"
|
1464 |
+
else:
|
1465 |
+
self.config.problem_type = "multi_label_classification"
|
1466 |
+
|
1467 |
+
if self.config.problem_type == "regression":
|
1468 |
+
loss_fct = MSELoss()
|
1469 |
+
if self.num_labels == 1:
|
1470 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1471 |
+
else:
|
1472 |
+
loss = loss_fct(pooled_logits, labels)
|
1473 |
+
elif self.config.problem_type == "single_label_classification":
|
1474 |
+
loss_fct = CrossEntropyLoss()
|
1475 |
+
loss = loss_fct(
|
1476 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1477 |
+
)
|
1478 |
+
elif self.config.problem_type == "multi_label_classification":
|
1479 |
+
loss_fct = BCEWithLogitsLoss()
|
1480 |
+
loss = loss_fct(pooled_logits, labels)
|
1481 |
+
if not return_dict:
|
1482 |
+
output = (pooled_logits,) + outputs[1:]
|
1483 |
+
return ((loss,) + output) if loss is not None else output
|
1484 |
+
|
1485 |
+
return SequenceClassifierOutputWithPast(
|
1486 |
+
loss=loss,
|
1487 |
+
logits=pooled_logits,
|
1488 |
+
past_key_values=outputs.past_key_values,
|
1489 |
+
hidden_states=outputs.hidden_states,
|
1490 |
+
attentions=outputs.attentions,
|
1491 |
+
)
|