--- library_name: transformers license: apache-2.0 base_model: ai-forever/ruBert-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: mmodel_v7 results: [] --- # mmodel_v7 This model is a fine-tuned version of [ai-forever/ruBert-base](https://huggingface.co/ai-forever/ruBert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4323 - Accuracy: 0.9040 - F1: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.517 | 1.0 | 1523 | 0.4415 | 0.8809 | 0.8692 | | 0.3514 | 2.0 | 3046 | 0.4008 | 0.8953 | 0.8870 | | 0.2396 | 3.0 | 4569 | 0.3796 | 0.9034 | 0.9010 | | 0.1594 | 4.0 | 6092 | 0.3798 | 0.9065 | 0.9034 | | 0.1006 | 5.0 | 7615 | 0.4323 | 0.9040 | 0.9015 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3