File size: 7,177 Bytes
bed38a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from transformers import PreTrainedModel
#from genomics_research.biobrain_p2.huggingface.modeling_enformer import Enformer
from genomics_research.biobrain_p2.huggingface.modeling_esm import NTForMaskedLM, MultiHeadAttention
from genomics_research.biobrain_p2.huggingface.isoformer_config import IsoformerConfig
#from genomics_research.biobrain_p2.huggingface.enformer_config import EnformerConfig
from genomics_research.biobrain_p2.huggingface.esm_config import NTConfig
from genomics_research.biobrain_p2.huggingface.modeling_esm_original import EsmForMaskedLM
from transformers.models.esm.configuration_esm import EsmConfig
from enformer_pytorch import Enformer, str_to_one_hot, EnformerConfig
import torch
from torch import nn

class Isoformer(PreTrainedModel):
    config_class = IsoformerConfig

    def __init__(self, config):
        super().__init__(config)


        self.esm_config = EsmConfig(
            vocab_size=config.esm_vocab_size,
            mask_token_id=config.esm_mask_token_id,
            pad_token_id=config.esm_pad_token_id,
            hidden_size=config.esm_hidden_size,
            num_hidden_layers=config.esm_num_hidden_layers,
            num_attention_heads=config.esm_num_attention_heads,
            intermediate_size=config.esm_intermediate_size,
            max_position_embeddings=config.esm_max_position_embeddings,
            token_dropout=config.esm_token_dropout,
            emb_layer_norm_before=config.esm_emb_layer_norm_before,
            attention_probs_dropout_prob=0.0,
            hidden_dropout_prob=0.0,
            use_cache=False,
            add_bias_fnn=config.esm_add_bias_fnn,
            position_embedding_type="rotary",
            tie_word_embeddings=False,
        )

        self.nt_config = NTConfig(
            vocab_size=config.nt_vocab_size,
            mask_token_id=config.nt_mask_token_id,
            pad_token_id=config.nt_pad_token_id,
            hidden_size=config.nt_hidden_size,
            num_hidden_layers=config.nt_num_hidden_layers,
            num_attention_heads=config.nt_num_attention_heads,
            intermediate_size=config.nt_intermediate_size,
            max_position_embeddings=config.nt_max_position_embeddings,
            token_dropout=config.nt_token_dropout,
            emb_layer_norm_before=config.nt_emb_layer_norm_before,
            attention_probs_dropout_prob=0.0,
            hidden_dropout_prob=0.0,
            use_cache=False,
            add_bias_fnn=config.nt_add_bias_fnn,
            position_embedding_type="rotary",
            tie_word_embeddings=False,
        )
        self.config = config

        # self.enformer_config = EnformerConfig(
        #     dim=config.enformer_dim,
        #     depth=config.enformer_depth,
        #     heads=config.enformer_heads,
        #     output_heads=dict(
        #         human=1,
        #         mouse=1 # TODO CHANGE
        #     ),
        #     target_length=config.enformer_target_length,  # 896,
        #     attn_dim_key=config.enformer_attn_dim_key,
        #     dropout_rate=0.4,
        #     attn_dropout=0.05,
        #     pos_dropout=0.01,
        #     use_checkpointing=config.enformer_use_checkpointing,
        #     use_convnext=config.enformer_use_convnext,
        #     num_downsamples=config.enformer_num_downsamples,
        #     # genetic sequence is downsampled 2 ** 7 == 128x in default Enformer - can be changed for higher resolution
        #     dim_divisible_by=config.enformer_dim_divisible_by,
        #     use_tf_gamma=False,
        # )

        self.esm_model = EsmForMaskedLM(self.esm_config) # protein encoder
        self.nt_model = NTForMaskedLM(self.nt_config) # rna encoder
        #self.enformer_model = Enformer(self.enformer_config) # dna encoder
        self.enformer_model = Enformer.from_pretrained("EleutherAI/enformer-official-rough")

        self.cross_attention_layer_rna = MultiHeadAttention(
            config=EsmConfig(
                num_attention_heads=config.num_heads_omics_cross_attention,
                attention_head_size=3072 // config.num_heads_omics_cross_attention,
                hidden_size=3072,
                attention_probs_dropout_prob=0,
                max_position_embeddings=0
            ),
            omics_of_interest_size=3072,
            other_omic_size=768
        )
        self.cross_attention_layer_protein = MultiHeadAttention(
            config=EsmConfig(
                num_attention_heads=config.num_heads_omics_cross_attention,
                attention_head_size=3072 // config.num_heads_omics_cross_attention,
                hidden_size=3072,
                attention_probs_dropout_prob=0,
                max_position_embeddings=0
            ),
            omics_of_interest_size=3072,
            other_omic_size=640
        )

        self.head_layer_1 = nn.Linear(3072, 2 * 3072)
        self.head_layer_2 = nn.Linear(2 * 3072, 30)

    def forward(
            self,
            tensor_dna,
            tensor_rna,
            tensor_protein,
            attention_mask_dna,
            attention_mask_rna,
            attention_mask_protein
    ):
        tensor_dna = tensor_dna[:, 1:] # remove CLS
        dna_embedding = self.enformer_model(
            tensor_dna,
            return_only_embeddings=True
            # attention_mask=attention_mask_dna,
            # encoder_attention_mask=attention_mask_dna,
            # output_hidden_states=True
        )
        protein_embedding = self.esm_model(
            tensor_protein,
            attention_mask=attention_mask_protein,
            encoder_attention_mask=attention_mask_protein,
            output_hidden_states=True
        )
        rna_embedding = self.nt_model(
            tensor_rna,
            attention_mask=attention_mask_rna,
            encoder_attention_mask=attention_mask_rna,
            output_hidden_states=True
        )

        encoder_attention_mask = torch.unsqueeze(torch.unsqueeze(tensor_rna != 1, 0),0).repeat(1,1,dna_embedding.shape[1],1)
        rna_to_dna = self.cross_attention_layer_rna.forward(
            hidden_states=dna_embedding,
            encoder_hidden_states=rna_embedding["hidden_states"][-1],
            encoder_attention_mask=encoder_attention_mask
        )

        final_dna_embeddings = self.cross_attention_layer_protein.forward(
            hidden_states=rna_to_dna["embeddings"],
            encoder_hidden_states=protein_embedding["hidden_states"][-1],
        )["embeddings"]

        sequence_mask = torch.zeros(final_dna_embeddings.shape[1])
        sequence_mask[self.config.pool_window_start:self.config.pool_window_end] = 1
        x = torch.sum(torch.einsum('ijk,j->ijk', final_dna_embeddings, sequence_mask),axis=1)/torch.sum(sequence_mask)
        x = self.head_layer_1(x)
        x = torch.nn.functional.softplus(x)
        x = self.head_layer_2(x)


        return {
            "gene_expression_predictions":x,
            "rna_to_dna": rna_to_dna,
            "final_embeddings": final_dna_embeddings,
            "dna_embedding": dna_embedding,
            "rna_embedding": rna_embedding,
            "protein_embedding": protein_embedding
        }