File size: 7,177 Bytes
bed38a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
from transformers import PreTrainedModel
#from genomics_research.biobrain_p2.huggingface.modeling_enformer import Enformer
from genomics_research.biobrain_p2.huggingface.modeling_esm import NTForMaskedLM, MultiHeadAttention
from genomics_research.biobrain_p2.huggingface.isoformer_config import IsoformerConfig
#from genomics_research.biobrain_p2.huggingface.enformer_config import EnformerConfig
from genomics_research.biobrain_p2.huggingface.esm_config import NTConfig
from genomics_research.biobrain_p2.huggingface.modeling_esm_original import EsmForMaskedLM
from transformers.models.esm.configuration_esm import EsmConfig
from enformer_pytorch import Enformer, str_to_one_hot, EnformerConfig
import torch
from torch import nn
class Isoformer(PreTrainedModel):
config_class = IsoformerConfig
def __init__(self, config):
super().__init__(config)
self.esm_config = EsmConfig(
vocab_size=config.esm_vocab_size,
mask_token_id=config.esm_mask_token_id,
pad_token_id=config.esm_pad_token_id,
hidden_size=config.esm_hidden_size,
num_hidden_layers=config.esm_num_hidden_layers,
num_attention_heads=config.esm_num_attention_heads,
intermediate_size=config.esm_intermediate_size,
max_position_embeddings=config.esm_max_position_embeddings,
token_dropout=config.esm_token_dropout,
emb_layer_norm_before=config.esm_emb_layer_norm_before,
attention_probs_dropout_prob=0.0,
hidden_dropout_prob=0.0,
use_cache=False,
add_bias_fnn=config.esm_add_bias_fnn,
position_embedding_type="rotary",
tie_word_embeddings=False,
)
self.nt_config = NTConfig(
vocab_size=config.nt_vocab_size,
mask_token_id=config.nt_mask_token_id,
pad_token_id=config.nt_pad_token_id,
hidden_size=config.nt_hidden_size,
num_hidden_layers=config.nt_num_hidden_layers,
num_attention_heads=config.nt_num_attention_heads,
intermediate_size=config.nt_intermediate_size,
max_position_embeddings=config.nt_max_position_embeddings,
token_dropout=config.nt_token_dropout,
emb_layer_norm_before=config.nt_emb_layer_norm_before,
attention_probs_dropout_prob=0.0,
hidden_dropout_prob=0.0,
use_cache=False,
add_bias_fnn=config.nt_add_bias_fnn,
position_embedding_type="rotary",
tie_word_embeddings=False,
)
self.config = config
# self.enformer_config = EnformerConfig(
# dim=config.enformer_dim,
# depth=config.enformer_depth,
# heads=config.enformer_heads,
# output_heads=dict(
# human=1,
# mouse=1 # TODO CHANGE
# ),
# target_length=config.enformer_target_length, # 896,
# attn_dim_key=config.enformer_attn_dim_key,
# dropout_rate=0.4,
# attn_dropout=0.05,
# pos_dropout=0.01,
# use_checkpointing=config.enformer_use_checkpointing,
# use_convnext=config.enformer_use_convnext,
# num_downsamples=config.enformer_num_downsamples,
# # genetic sequence is downsampled 2 ** 7 == 128x in default Enformer - can be changed for higher resolution
# dim_divisible_by=config.enformer_dim_divisible_by,
# use_tf_gamma=False,
# )
self.esm_model = EsmForMaskedLM(self.esm_config) # protein encoder
self.nt_model = NTForMaskedLM(self.nt_config) # rna encoder
#self.enformer_model = Enformer(self.enformer_config) # dna encoder
self.enformer_model = Enformer.from_pretrained("EleutherAI/enformer-official-rough")
self.cross_attention_layer_rna = MultiHeadAttention(
config=EsmConfig(
num_attention_heads=config.num_heads_omics_cross_attention,
attention_head_size=3072 // config.num_heads_omics_cross_attention,
hidden_size=3072,
attention_probs_dropout_prob=0,
max_position_embeddings=0
),
omics_of_interest_size=3072,
other_omic_size=768
)
self.cross_attention_layer_protein = MultiHeadAttention(
config=EsmConfig(
num_attention_heads=config.num_heads_omics_cross_attention,
attention_head_size=3072 // config.num_heads_omics_cross_attention,
hidden_size=3072,
attention_probs_dropout_prob=0,
max_position_embeddings=0
),
omics_of_interest_size=3072,
other_omic_size=640
)
self.head_layer_1 = nn.Linear(3072, 2 * 3072)
self.head_layer_2 = nn.Linear(2 * 3072, 30)
def forward(
self,
tensor_dna,
tensor_rna,
tensor_protein,
attention_mask_dna,
attention_mask_rna,
attention_mask_protein
):
tensor_dna = tensor_dna[:, 1:] # remove CLS
dna_embedding = self.enformer_model(
tensor_dna,
return_only_embeddings=True
# attention_mask=attention_mask_dna,
# encoder_attention_mask=attention_mask_dna,
# output_hidden_states=True
)
protein_embedding = self.esm_model(
tensor_protein,
attention_mask=attention_mask_protein,
encoder_attention_mask=attention_mask_protein,
output_hidden_states=True
)
rna_embedding = self.nt_model(
tensor_rna,
attention_mask=attention_mask_rna,
encoder_attention_mask=attention_mask_rna,
output_hidden_states=True
)
encoder_attention_mask = torch.unsqueeze(torch.unsqueeze(tensor_rna != 1, 0),0).repeat(1,1,dna_embedding.shape[1],1)
rna_to_dna = self.cross_attention_layer_rna.forward(
hidden_states=dna_embedding,
encoder_hidden_states=rna_embedding["hidden_states"][-1],
encoder_attention_mask=encoder_attention_mask
)
final_dna_embeddings = self.cross_attention_layer_protein.forward(
hidden_states=rna_to_dna["embeddings"],
encoder_hidden_states=protein_embedding["hidden_states"][-1],
)["embeddings"]
sequence_mask = torch.zeros(final_dna_embeddings.shape[1])
sequence_mask[self.config.pool_window_start:self.config.pool_window_end] = 1
x = torch.sum(torch.einsum('ijk,j->ijk', final_dna_embeddings, sequence_mask),axis=1)/torch.sum(sequence_mask)
x = self.head_layer_1(x)
x = torch.nn.functional.softplus(x)
x = self.head_layer_2(x)
return {
"gene_expression_predictions":x,
"rna_to_dna": rna_to_dna,
"final_embeddings": final_dna_embeddings,
"dna_embedding": dna_embedding,
"rna_embedding": rna_embedding,
"protein_embedding": protein_embedding
} |