A small snippet of code is given here in order to retrieve embeddings and gene expression predictions given a DNA, RNA and protein sequence. ```python from transformers import AutoTokenizer, AutoModelForMaskedLM import numpy as np import torch # Import the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained("isoformer-anonymous/Isoformer", trust_remote_code=True) model = AutoModelForMaskedLM.from_pretrained("isoformer-anonymous/Isoformer",trust_remote_code=True) protein_sequences = ["RSRSRSRSRSRSRSRSRSRSRL" * 9] rna_sequences = ["ATTCCGGTTTTCA" * 9] sequence_length = 196_608 rng = np.random.default_rng(seed=0) dna_sequences = ["".join(rng.choice(list("ATCGN"), size=(sequence_length,)))] torch_tokens = tokenizer( dna_input=dna_sequences, rna_input=rna_sequences, protein_input=protein_sequences ) dna_torch_tokens = torch.tensor(torch_tokens[0]["input_ids"]) rna_torch_tokens = torch.tensor(torch_tokens[1]["input_ids"]) protein_torch_tokens = torch.tensor(torch_tokens[2]["input_ids"]) torch_output = model.forward( tensor_dna=dna_torch_tokens, tensor_rna=rna_torch_tokens, tensor_protein=protein_torch_tokens, attention_mask_rna=rna_torch_tokens != 1, attention_mask_protein=protein_torch_tokens != 1, ) print(f"Gene expression predictions: {torch_output['gene_expression_predictions']}") print(f"Final DNA embedding: {torch_output['final_dna_embeddings']}") ```