Cesar Aybar
commited on
Commit
·
caa7010
1
Parent(s):
ce8cb02
benchmark script
Browse files- benchmark.py +56 -0
- ldm_baseline/metadata.json +10 -0
- ldm_baseline/run.py +35 -0
- ldm_baseline/utils.py +73 -0
benchmark.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import rasterio
|
2 |
+
import pathlib
|
3 |
+
|
4 |
+
from typing import Callable
|
5 |
+
from rasterio.transform import from_origin
|
6 |
+
|
7 |
+
|
8 |
+
def create_geotiff(
|
9 |
+
fn: Callable,
|
10 |
+
dataset_snippet: str,
|
11 |
+
output_path: str
|
12 |
+
) -> pathlib.Path:
|
13 |
+
"""Create all the GeoTIFFs for a specific dataset snippet
|
14 |
+
|
15 |
+
Args:
|
16 |
+
fn (Callable): A function that return a dictionary with the following keys:
|
17 |
+
- "lr": Low resolution image
|
18 |
+
- "sr": Super resolution image
|
19 |
+
- "hr": High resolution image
|
20 |
+
dataset_snippet (str): The dataset snippet to use to run the fn function.
|
21 |
+
output_path (str): The output path to save the GeoTIFFs.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
pathlib.Path: The output path where the GeoTIFFs are saved.
|
25 |
+
"""
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
def run(
|
30 |
+
model_path: str
|
31 |
+
) -> pathlib.Path:
|
32 |
+
"""Run the all metrics for a specific model.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
model_path (str): The path to the model folder.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
pathlib.Path: The output path where the metrics are
|
39 |
+
saved as a pickle file.
|
40 |
+
"""
|
41 |
+
pass
|
42 |
+
|
43 |
+
|
44 |
+
def plot(
|
45 |
+
model_path: str
|
46 |
+
) -> pathlib.Path:
|
47 |
+
"""Generate the plots and tables for a specific model.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
model_path (str): The path to the model folder.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
pathlib.Path: The output path where the plots and tables are
|
54 |
+
saved.
|
55 |
+
"""
|
56 |
+
pass
|
ldm_baseline/metadata.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "ldm-baseline",
|
3 |
+
"authors": ["CompVis team"],
|
4 |
+
"affiliations": ["None"],
|
5 |
+
"description": "A baseline of LDM models trained on the Open Images dataset.",
|
6 |
+
"code": "open-source",
|
7 |
+
"scale": "x4",
|
8 |
+
"url": "https://huggingface.co/CompVis/ldm-super-resolution-4x-openimages",
|
9 |
+
"license": "apache-2.0"
|
10 |
+
}
|
ldm_baseline/run.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import opensr_test
|
3 |
+
|
4 |
+
from ldm_baseline.utils import create_stable_diffusion_model, run_diffuser
|
5 |
+
|
6 |
+
# set the device
|
7 |
+
device = "cuda:0"
|
8 |
+
|
9 |
+
# Load the model
|
10 |
+
model = create_stable_diffusion_model(device=device)
|
11 |
+
|
12 |
+
# Load the dataset
|
13 |
+
dataset = opensr_test.load("spain_crops")
|
14 |
+
lr_dataset, hr_dataset = dataset["L2A"], dataset["HRharm"]
|
15 |
+
|
16 |
+
# Run the model
|
17 |
+
results = run_diffuser(model=model, lr=lr_dataset[5], hr=hr_dataset[5], device=device)
|
18 |
+
|
19 |
+
# Display the results
|
20 |
+
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
|
21 |
+
ax[0].imshow(results["lr"].transpose(1, 2, 0) / 3000)
|
22 |
+
ax[0].set_title("LR")
|
23 |
+
ax[0].axis("off")
|
24 |
+
ax[1].imshow(results["sr"].transpose(1, 2, 0) / 3000)
|
25 |
+
ax[1].set_title("SR")
|
26 |
+
ax[1].axis("off")
|
27 |
+
ax[2].imshow(results["hr"].transpose(1, 2, 0) / 3000)
|
28 |
+
ax[2].set_title("HR")
|
29 |
+
plt.show()
|
30 |
+
|
31 |
+
# Run the experiment
|
32 |
+
#
|
33 |
+
# benchmark.create_geotiff(run_diffuser, "all", "ldm_baseline/")
|
34 |
+
# benchmark.run("all")
|
35 |
+
# benchmark.plot("all")
|
ldm_baseline/utils.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import opensr_test
|
6 |
+
import torch
|
7 |
+
from diffusers import LDMSuperResolutionPipeline
|
8 |
+
|
9 |
+
|
10 |
+
def create_stable_diffusion_model(
|
11 |
+
device: Union[str, torch.device] = "cuda"
|
12 |
+
) -> LDMSuperResolutionPipeline:
|
13 |
+
"""Create the stable diffusion model
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
LDMSuperResolutionPipeline: The model to use for
|
17 |
+
super resolution.
|
18 |
+
"""
|
19 |
+
model_id = "CompVis/ldm-super-resolution-4x-openimages"
|
20 |
+
pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
|
21 |
+
pipeline = pipeline.to(device)
|
22 |
+
return pipeline
|
23 |
+
|
24 |
+
|
25 |
+
def run_diffuser(
|
26 |
+
model: LDMSuperResolutionPipeline,
|
27 |
+
lr: torch.Tensor,
|
28 |
+
hr: torch.Tensor,
|
29 |
+
device: Union[str, torch.device] = "cuda",
|
30 |
+
) -> dict:
|
31 |
+
"""Run the model on the low resolution image
|
32 |
+
|
33 |
+
Args:
|
34 |
+
model (LDMSuperResolutionPipeline): The model to use
|
35 |
+
lr (torch.Tensor): The low resolution image
|
36 |
+
hr (torch.Tensor): The high resolution image
|
37 |
+
device (Union[str, torch.device], optional): The device
|
38 |
+
to use. Defaults to "cuda".
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
dict: The results of the model
|
42 |
+
"""
|
43 |
+
|
44 |
+
# move the images to the device
|
45 |
+
lr = (torch.from_numpy(lr[[3, 2, 1]]) / 2000).to(device).clamp(0, 1)
|
46 |
+
|
47 |
+
if lr.shape[1] == 121:
|
48 |
+
# add padding
|
49 |
+
lr = torch.nn.functional.pad(
|
50 |
+
lr[None], pad=(3, 4, 3, 4), mode="reflect"
|
51 |
+
).squeeze()
|
52 |
+
|
53 |
+
# run the model
|
54 |
+
with torch.no_grad():
|
55 |
+
sr = model(lr[None], num_inference_steps=100, eta=1)
|
56 |
+
sr = torch.from_numpy(np.array(sr.images[0]) / 255).permute(2, 0, 1).float()
|
57 |
+
|
58 |
+
# remove padding
|
59 |
+
sr = sr[:, 3 * 4 : -4 * 4, 3 * 4 : -4 * 4]
|
60 |
+
lr = lr[:, 3:-4, 3:-4]
|
61 |
+
else:
|
62 |
+
# run the model
|
63 |
+
with torch.no_grad():
|
64 |
+
sr = model(lr[None], num_inference_steps=100, eta=1)
|
65 |
+
sr = torch.from_numpy(np.array(sr.images[0]) / 255).permute(2, 0, 1).float()
|
66 |
+
|
67 |
+
lr = (lr.cpu().numpy() * 2000).astype(np.uint16)
|
68 |
+
hr = ((hr[0:3] / 2000).clip(0, 1) * 2000).astype(np.uint16)
|
69 |
+
sr = (sr.cpu().numpy() * 2000).astype(np.uint16)
|
70 |
+
|
71 |
+
results = {"lr": lr, "hr": hr, "sr": sr}
|
72 |
+
|
73 |
+
return results
|