update model card README.md
Browse files
README.md
CHANGED
@@ -12,10 +12,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# wav2vec_asr_swbd
|
14 |
|
15 |
-
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Wer: 0.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -42,27 +42,83 @@ The following hyperparameters were used during training:
|
|
42 |
- total_train_batch_size: 80
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
-
- lr_scheduler_warmup_steps:
|
46 |
- num_epochs: 20
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
-
| Training Loss | Epoch | Step
|
52 |
-
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Framework versions
|
|
|
12 |
|
13 |
# wav2vec_asr_swbd
|
14 |
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.3052
|
18 |
+
- Wer: 0.5302
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
42 |
- total_train_batch_size: 80
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 500
|
46 |
- num_epochs: 20
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
53 |
+
| 1.5445 | 0.29 | 500 | 0.9114 | 0.6197 |
|
54 |
+
| 0.9397 | 0.58 | 1000 | 0.5057 | 0.5902 |
|
55 |
+
| 0.8557 | 0.86 | 1500 | 0.4465 | 0.6264 |
|
56 |
+
| 0.7716 | 1.15 | 2000 | 0.4182 | 0.5594 |
|
57 |
+
| 0.7659 | 1.44 | 2500 | 0.4111 | 0.7048 |
|
58 |
+
| 0.7406 | 1.73 | 3000 | 0.3927 | 0.5944 |
|
59 |
+
| 0.6857 | 2.02 | 3500 | 0.3852 | 0.7118 |
|
60 |
+
| 0.7113 | 2.31 | 4000 | 0.3775 | 0.5608 |
|
61 |
+
| 0.6804 | 2.59 | 4500 | 0.3885 | 0.5759 |
|
62 |
+
| 0.6654 | 2.88 | 5000 | 0.3703 | 0.7226 |
|
63 |
+
| 0.6569 | 3.17 | 5500 | 0.3688 | 0.5972 |
|
64 |
+
| 0.6335 | 3.46 | 6000 | 0.3661 | 0.7278 |
|
65 |
+
| 0.6309 | 3.75 | 6500 | 0.3579 | 0.6324 |
|
66 |
+
| 0.6231 | 4.03 | 7000 | 0.3620 | 0.5770 |
|
67 |
+
| 0.6171 | 4.32 | 7500 | 0.3640 | 0.5772 |
|
68 |
+
| 0.6191 | 4.61 | 8000 | 0.3553 | 0.6075 |
|
69 |
+
| 0.6142 | 4.9 | 8500 | 0.3543 | 0.6126 |
|
70 |
+
| 0.5905 | 5.19 | 9000 | 0.3601 | 0.6319 |
|
71 |
+
| 0.5846 | 5.48 | 9500 | 0.3429 | 0.7343 |
|
72 |
+
| 0.5874 | 5.76 | 10000 | 0.3429 | 0.5962 |
|
73 |
+
| 0.5768 | 6.05 | 10500 | 0.3381 | 0.7410 |
|
74 |
+
| 0.5783 | 6.34 | 11000 | 0.3391 | 0.5823 |
|
75 |
+
| 0.5835 | 6.63 | 11500 | 0.3447 | 0.5821 |
|
76 |
+
| 0.5817 | 6.92 | 12000 | 0.3314 | 0.6890 |
|
77 |
+
| 0.5459 | 7.2 | 12500 | 0.3363 | 0.5727 |
|
78 |
+
| 0.5575 | 7.49 | 13000 | 0.3363 | 0.7387 |
|
79 |
+
| 0.5505 | 7.78 | 13500 | 0.3368 | 0.5685 |
|
80 |
+
| 0.55 | 8.07 | 14000 | 0.3330 | 0.5587 |
|
81 |
+
| 0.5523 | 8.36 | 14500 | 0.3338 | 0.5484 |
|
82 |
+
| 0.5116 | 8.65 | 15000 | 0.3350 | 0.4351 |
|
83 |
+
| 0.5263 | 8.93 | 15500 | 0.3254 | 0.6235 |
|
84 |
+
| 0.5265 | 9.22 | 16000 | 0.3297 | 0.6207 |
|
85 |
+
| 0.5265 | 9.51 | 16500 | 0.3279 | 0.6143 |
|
86 |
+
| 0.5172 | 9.8 | 17000 | 0.3260 | 0.5800 |
|
87 |
+
| 0.5028 | 10.09 | 17500 | 0.3259 | 0.5774 |
|
88 |
+
| 0.5062 | 10.37 | 18000 | 0.3259 | 0.5552 |
|
89 |
+
| 0.5112 | 10.66 | 18500 | 0.3201 | 0.6625 |
|
90 |
+
| 0.5149 | 10.95 | 19000 | 0.3184 | 0.6865 |
|
91 |
+
| 0.4939 | 11.24 | 19500 | 0.3152 | 0.6116 |
|
92 |
+
| 0.5065 | 11.53 | 20000 | 0.3172 | 0.5246 |
|
93 |
+
| 0.5129 | 11.82 | 20500 | 0.3129 | 0.5908 |
|
94 |
+
| 0.4909 | 12.1 | 21000 | 0.3152 | 0.6075 |
|
95 |
+
| 0.4865 | 12.39 | 21500 | 0.3160 | 0.5037 |
|
96 |
+
| 0.4805 | 12.68 | 22000 | 0.3139 | 0.5458 |
|
97 |
+
| 0.4691 | 12.97 | 22500 | 0.3225 | 0.5815 |
|
98 |
+
| 0.4534 | 13.26 | 23000 | 0.3168 | 0.5614 |
|
99 |
+
| 0.4661 | 13.54 | 23500 | 0.3135 | 0.6053 |
|
100 |
+
| 0.4636 | 13.83 | 24000 | 0.3120 | 0.5142 |
|
101 |
+
| 0.4554 | 14.12 | 24500 | 0.3127 | 0.5552 |
|
102 |
+
| 0.4602 | 14.41 | 25000 | 0.3117 | 0.5562 |
|
103 |
+
| 0.4521 | 14.7 | 25500 | 0.3106 | 0.4995 |
|
104 |
+
| 0.4369 | 14.99 | 26000 | 0.3100 | 0.5663 |
|
105 |
+
| 0.4249 | 15.27 | 26500 | 0.3110 | 0.5262 |
|
106 |
+
| 0.4321 | 15.56 | 27000 | 0.3106 | 0.5183 |
|
107 |
+
| 0.4293 | 15.85 | 27500 | 0.3091 | 0.5311 |
|
108 |
+
| 0.4537 | 16.14 | 28000 | 0.3134 | 0.4986 |
|
109 |
+
| 0.4258 | 16.43 | 28500 | 0.3138 | 0.4487 |
|
110 |
+
| 0.4347 | 16.71 | 29000 | 0.3091 | 0.5011 |
|
111 |
+
| 0.4615 | 17.0 | 29500 | 0.3068 | 0.5616 |
|
112 |
+
| 0.4163 | 17.29 | 30000 | 0.3115 | 0.5426 |
|
113 |
+
| 0.4074 | 17.58 | 30500 | 0.3079 | 0.5341 |
|
114 |
+
| 0.4121 | 17.87 | 31000 | 0.3047 | 0.5619 |
|
115 |
+
| 0.4219 | 18.16 | 31500 | 0.3085 | 0.5051 |
|
116 |
+
| 0.4049 | 18.44 | 32000 | 0.3084 | 0.5116 |
|
117 |
+
| 0.4119 | 18.73 | 32500 | 0.3071 | 0.5028 |
|
118 |
+
| 0.4129 | 19.02 | 33000 | 0.3064 | 0.5030 |
|
119 |
+
| 0.4143 | 19.31 | 33500 | 0.3040 | 0.5086 |
|
120 |
+
| 0.4013 | 19.6 | 34000 | 0.3057 | 0.5271 |
|
121 |
+
| 0.4162 | 19.88 | 34500 | 0.3052 | 0.5302 |
|
122 |
|
123 |
|
124 |
### Framework versions
|