update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec_asr_swbd_10_epochs
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec_asr_swbd_10_epochs
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: nan
|
18 |
+
- Wer: 0.9627
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 1000
|
44 |
+
- num_epochs: 10
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:------:|:---------------:|:------:|
|
51 |
+
| 1.0682 | 0.22 | 5000 | 0.7383 | 0.4431 |
|
52 |
+
| 0.9143 | 0.44 | 10000 | 0.7182 | 0.4058 |
|
53 |
+
| 0.8905 | 0.66 | 15000 | 0.6291 | 0.3987 |
|
54 |
+
| 0.8354 | 0.87 | 20000 | 0.5976 | 0.3954 |
|
55 |
+
| 0.7749 | 1.09 | 25000 | 0.5773 | 0.3901 |
|
56 |
+
| 0.7336 | 1.31 | 30000 | 0.5812 | 0.3871 |
|
57 |
+
| 0.7314 | 1.53 | 35000 | 0.5802 | 0.3895 |
|
58 |
+
| 0.0 | 1.75 | 40000 | nan | 0.9627 |
|
59 |
+
| 0.0 | 1.97 | 45000 | nan | 0.9627 |
|
60 |
+
| 0.0 | 2.19 | 50000 | nan | 0.9627 |
|
61 |
+
| 0.0 | 2.4 | 55000 | nan | 0.9627 |
|
62 |
+
| 0.0 | 2.62 | 60000 | nan | 0.9627 |
|
63 |
+
| 0.0 | 2.84 | 65000 | nan | 0.9627 |
|
64 |
+
| 0.0 | 3.06 | 70000 | nan | 0.9627 |
|
65 |
+
| 0.0 | 3.28 | 75000 | nan | 0.9627 |
|
66 |
+
| 0.0 | 3.5 | 80000 | nan | 0.9627 |
|
67 |
+
| 0.0 | 3.72 | 85000 | nan | 0.9627 |
|
68 |
+
| 0.0 | 3.93 | 90000 | nan | 0.9627 |
|
69 |
+
| 0.0 | 4.15 | 95000 | nan | 0.9627 |
|
70 |
+
| 0.0 | 4.37 | 100000 | nan | 0.9627 |
|
71 |
+
| 0.0 | 4.59 | 105000 | nan | 0.9627 |
|
72 |
+
| 0.0 | 4.81 | 110000 | nan | 0.9627 |
|
73 |
+
| 0.0 | 5.03 | 115000 | nan | 0.9627 |
|
74 |
+
| 0.0 | 5.25 | 120000 | nan | 0.9627 |
|
75 |
+
| 0.0 | 5.46 | 125000 | nan | 0.9627 |
|
76 |
+
| 0.0 | 5.68 | 130000 | nan | 0.9627 |
|
77 |
+
| 0.0 | 5.9 | 135000 | nan | 0.9627 |
|
78 |
+
| 0.0 | 6.12 | 140000 | nan | 0.9627 |
|
79 |
+
| 0.0 | 6.34 | 145000 | nan | 0.9627 |
|
80 |
+
| 0.0 | 6.56 | 150000 | nan | 0.9627 |
|
81 |
+
| 0.0 | 6.78 | 155000 | nan | 0.9627 |
|
82 |
+
| 0.0 | 7.0 | 160000 | nan | 0.9627 |
|
83 |
+
| 0.0 | 7.21 | 165000 | nan | 0.9627 |
|
84 |
+
| 0.0 | 7.43 | 170000 | nan | 0.9627 |
|
85 |
+
| 0.0 | 7.65 | 175000 | nan | 0.9627 |
|
86 |
+
| 0.0 | 7.87 | 180000 | nan | 0.9627 |
|
87 |
+
| 0.0 | 8.09 | 185000 | nan | 0.9627 |
|
88 |
+
| 0.0 | 8.31 | 190000 | nan | 0.9627 |
|
89 |
+
| 0.0 | 8.53 | 195000 | nan | 0.9627 |
|
90 |
+
| 0.0 | 8.74 | 200000 | nan | 0.9627 |
|
91 |
+
| 0.0 | 8.96 | 205000 | nan | 0.9627 |
|
92 |
+
| 0.0 | 9.18 | 210000 | nan | 0.9627 |
|
93 |
+
| 0.0 | 9.4 | 215000 | nan | 0.9627 |
|
94 |
+
| 0.0 | 9.62 | 220000 | nan | 0.9627 |
|
95 |
+
| 0.0 | 9.84 | 225000 | nan | 0.9627 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.17.0
|
101 |
+
- Pytorch 1.11.0+cu113
|
102 |
+
- Datasets 1.18.4
|
103 |
+
- Tokenizers 0.11.6
|