itpossible commited on
Commit
ac5c697
·
verified ·
1 Parent(s): 134ac99

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md CHANGED
@@ -69,6 +69,86 @@ outputs = tokenizer.batch_decode(outputs_id, skip_special_tokens=True)[0]
69
  print(outputs)
70
  ```
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ## Citations
73
  ```bibtex
74
  @article{chen2024preparedllm,
 
69
  print(outputs)
70
  ```
71
 
72
+ ## Model Performance
73
+
74
+ ### Geoscience Ability
75
+ We evaluate the performance of JiuZhou using the GeoBench benchmark.<br>
76
+ JiuZhou outperforms GPT-3.5 in objective tasks:
77
+ <p align="center">
78
+ <br>
79
+ <img src="image/objective_score.png" width="800"/>
80
+ <br>
81
+ </p>
82
+ JiuZhou also scores higher than JiuZhou across six criteria in subjective tasks:
83
+ <p align="center">
84
+ <br>
85
+ <img src="image/subjective_score.png" width="800"/>
86
+ <br>
87
+ </p>
88
+ ### General Ability
89
+ We evaluate the performance of JiuZhou using three benchmark datasets: C-Eval, CMMLU, and MMLU.<br>
90
+ Compared to other variants of Llama and Mistral models, JiuZhou shows outstanding performance:
91
+ <p align="center">
92
+ <br>
93
+ <img src="image/general_score.png" width="800"/>
94
+ <br>
95
+ </p>
96
+ ## Model Training Process
97
+ ### Training Corpus
98
+ The corpus consists of 50 million general documents and 3.4 million geoscience-related documents.
99
+ <p align="center">
100
+ <br>
101
+ <img src="image/JiuZhou-Corpus.png" width="800"/>
102
+ <br>
103
+ </p>
104
+ ### Training Framework
105
+ We use the JiuZhou-Framework proposed in this study.
106
+ <p align="center">
107
+ <br>
108
+ <img src="image/JiuZhou-Framework.png" width="800"/>
109
+ <br>
110
+ </p>
111
+ ### Two-stage Pre-adaptation Pre-training (TSPT)
112
+ TSPT improves the efficiency of using limited geoscience data and overcomes some of the technical bottlenecks in continual pretraining for LLMs.<br>
113
+ The difference between TSPT and single-stage training algorithms:
114
+ <p align="center">
115
+ <br>
116
+ <img src="image/TSPT.png" width="800"/>
117
+ <br>
118
+ </p>
119
+ Comparison of TSPT and one-stage pre-training algorithm performance:
120
+ <p align="center">
121
+ <br>
122
+ <img src="image/TSPT_score.png" width="800"/>
123
+ <br>
124
+ </p>
125
+ ## Model Training Code
126
+ We use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to fine-tune JiuZhou.
127
+
128
+ ### Project Deployment
129
+ ```bash
130
+ git clone https://github.com/THU-ESIS/JiuZhou.git
131
+ cd JiuZhou
132
+ pip install -e ".[torch,metrics]"
133
+ ```
134
+ ### Model Training
135
+ Pre-training:
136
+ ```bash
137
+ llamafactory-cli train examples/train_lora/JiuZhou_pretrain_sft.yaml
138
+ ```
139
+ Instruction-tuning:
140
+ ```bash
141
+ llamafactory-cli train examples/train_lora/JiuZhou_lora_sft.yaml
142
+ ```
143
+ Chat with the fine-tuned JiuZhou::
144
+ ```bash
145
+ llamafactory-cli chat examples/inference/JiuZhou_lora_sft.yaml
146
+ ```
147
+ Merge the instruction-tuned LoRA weights with the original JiuZhou weights:
148
+ ```bash
149
+ llamafactory-cli export examples/merge_lora/JiuZhou_lora_sft.yaml
150
+ ```
151
+
152
  ## Citations
153
  ```bibtex
154
  @article{chen2024preparedllm,