umn-cyber/indobert-hoax-detection
Browse files- README.md +5 -5
- all_results.json +16 -0
- eval_results.json +11 -0
- test_results.json +11 -0
- train_results.json +8 -0
README.md
CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0452
|
25 |
+
- Accuracy: 0.9861
|
26 |
+
- F1: 0.9854
|
27 |
+
- Precision: 0.9837
|
28 |
+
- Recall: 0.9872
|
29 |
|
30 |
## Model description
|
31 |
|
all_results.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9861299052774019,
|
4 |
+
"eval_f1": 0.9854455094071708,
|
5 |
+
"eval_loss": 0.045191410928964615,
|
6 |
+
"eval_precision": 0.9836995038979447,
|
7 |
+
"eval_recall": 0.9871977240398293,
|
8 |
+
"eval_runtime": 82.3688,
|
9 |
+
"eval_samples_per_second": 35.887,
|
10 |
+
"eval_steps_per_second": 1.129,
|
11 |
+
"total_flos": 3.11005644392448e+16,
|
12 |
+
"train_loss": 0.03944617702703827,
|
13 |
+
"train_runtime": 23402.751,
|
14 |
+
"train_samples_per_second": 10.101,
|
15 |
+
"train_steps_per_second": 0.316
|
16 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9868020304568528,
|
4 |
+
"eval_f1": 0.9861751152073732,
|
5 |
+
"eval_loss": 0.04318568482995033,
|
6 |
+
"eval_precision": 0.9830388692579505,
|
7 |
+
"eval_recall": 0.9893314366998578,
|
8 |
+
"eval_runtime": 82.3694,
|
9 |
+
"eval_samples_per_second": 35.875,
|
10 |
+
"eval_steps_per_second": 1.129
|
11 |
+
}
|
test_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9861299052774019,
|
4 |
+
"eval_f1": 0.9854455094071708,
|
5 |
+
"eval_loss": 0.045191410928964615,
|
6 |
+
"eval_precision": 0.9836995038979447,
|
7 |
+
"eval_recall": 0.9871977240398293,
|
8 |
+
"eval_runtime": 82.3688,
|
9 |
+
"eval_samples_per_second": 35.887,
|
10 |
+
"eval_steps_per_second": 1.129
|
11 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"total_flos": 3.11005644392448e+16,
|
4 |
+
"train_loss": 0.03944617702703827,
|
5 |
+
"train_runtime": 23402.751,
|
6 |
+
"train_samples_per_second": 10.101,
|
7 |
+
"train_steps_per_second": 0.316
|
8 |
+
}
|