image-variation-experiments / inference_pixart_custom_redux.py
ivand-all3d's picture
Initial commit
1f61707
import argparse
import time
import torch
from diffusers import PixArtAlphaPipeline
from diffusers.pipelines.flux import FluxPriorReduxPipeline
from diffusers.pipelines.flux.modeling_flux import ReduxImageEncoder
from transformers import SiglipImageProcessor
from pathlib import Path
from PIL import Image
pipe = None
redux = None
redux_embedder = None
def generate(prompt, image_prompt=None, guidance_scale=2, num_images=4, resolution=512):
with torch.no_grad():
clip_image_processor = SiglipImageProcessor(size={"height": 384, "width": 384})
clip_pixel_values = clip_image_processor.preprocess(
image_prompt.convert("RGB"), return_tensors="pt"
).pixel_values.to("cuda", dtype=torch.bfloat16)
image_prompt_latents = redux.image_encoder(clip_pixel_values).last_hidden_state
image_prompt_embeds = redux_embedder(image_prompt_latents).image_embeds
prompt_embeds = image_prompt_embeds[:, :120, :]
attention_mask = torch.ones(prompt_embeds.shape[0], prompt_embeds.shape[1]).to("cuda")
images = pipe(
prompt_embeds=prompt_embeds,
prompt_attention_mask=attention_mask,
negative_prompt="",
height=resolution,
width=resolution,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images,
).images
# Concatenate all images horizontally
widths, heights = zip(*[img.size for img in images])
total_width = sum(widths) + len(images) - 1
max_height = max(heights)
out = Image.new('RGB', (total_width, max_height))
x_offset = 0
for img in images:
out.paste(img, (x_offset, 0))
x_offset += img.width + 1
# If an image prompt was provided, stack it above the generated images
if image_prompt is not None:
out_with_image_prompt = Image.new('RGB', (out.width, out.height + 1 + resolution))
resized_prompt = image_prompt.resize((resolution, resolution), Image.Resampling.BILINEAR)
out_with_image_prompt.paste(resized_prompt, (0, 0))
out_with_image_prompt.paste(out, (0, resolution + 1))
out = out_with_image_prompt
Path("image-outputs").mkdir(parents=True, exist_ok=True)
output_filename = f"image-outputs/{prompt[:40].replace(' ', '_')}.{int(time.time())}.png"
out.save(output_filename)
print(f"Saved output to {output_filename}")
def main():
parser = argparse.ArgumentParser(
description="Generate images using an image and a text prompt (PixArt Custom Redux)."
)
parser.add_argument("--prompt", type=str, default="",
help='The text prompt for image generation (default: "")')
parser.add_argument("--image_prompt", type=str, default=None,
help="Path to an optional image to use as a prompt")
parser.add_argument("--guidance_scale", type=float, default=2,
help="Guidance scale for image generation (default: 2)")
parser.add_argument("--num_images", type=int, default=4,
help="Number of images to generate (default: 4)")
parser.add_argument("--resolution", type=int, default=512,
help="Resolution for generated images (default: 512)")
args = parser.parse_args()
global pipe, redux, redux_embedder
pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-512x512", torch_dtype=torch.bfloat16)
redux_embedder = ReduxImageEncoder.from_pretrained("pixart-custom-redux", torch_dtype=torch.bfloat16)
redux = FluxPriorReduxPipeline.from_pretrained("FLUX.1-Redux-dev", image_embedder=redux_embedder, torch_dtype=torch.bfloat16)
pipe.to("cuda")
redux.to("cuda")
img_prompt = Image.open(args.image_prompt) if args.image_prompt else None
generate(args.prompt, image_prompt=img_prompt, guidance_scale=args.guidance_scale,
num_images=args.num_images, resolution=args.resolution)
if __name__ == "__main__":
main()