File size: 3,255 Bytes
5a40a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e84aa6
 
 
 
 
 
 
 
 
5a40a3e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: cc-by-4.0
language:
- gvc
metrics:
- cer
pipeline_tag: automatic-speech-recognition
datasets:
- ivangtorre/second_americas_nlp_2022
tags:
- audio
- automatic-speech-recognition
- speech
- kotiria
- xlsr-fine-tuning
model-index:
- name: Wav2Vec2 XLSR 300M Kotiria Model by M Romero and Ivan G Torre
  results:
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Americas NLP 2022 Kotiria
      type: second_americas_nlp_2022
      args: Kotiria
    metrics:
    - name: Test CER
      type: cer
      value: 36.00

---

This model was finetuned from a Wav2vec2.0 XLS-R model: 300M with the Kotiria train parition of the Americas NLP 2022 dataset. This challenge took place during NeurIPSS 2022.



## Example of usage

The model can be used directly (without a language model) as follows:

```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import torch
import torchaudio

# load model and processor
processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-kotiria")
model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-kotiria")

# Pat to wav file
pathfile = "/path/to/wavfile"

# Load and normalize the file
wav, curr_sample_rate = sf.read(pathfile, dtype="float32")
feats = torch.from_numpy(wav).float()
with torch.no_grad():
    feats = F.layer_norm(feats, feats.shape)
feats = torch.unsqueeze(feats, 0)
logits = model(feats).logits

# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
print("HF prediction: ", transcription)
```


This code snipnet shows how to Evaluate the wav2vec2-xlsr-300m-kotiria in [Second Americas NLP 2022 Kotiria dev set](https://huggingface.co/datasets/ivangtorre/second_americas_nlp_2022)

```python
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import cer
import torch.nn.functional as F
from datasets import load_dataset
import soundfile as sf

americasnlp = load_dataset("ivangtorre/second_americas_nlp_2022", "kotiria", split="dev")
kotiria = americasnlp.filter(lambda language: language['subset']=='kotiria')

model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-kotiria")
processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-kotiria")

def map_to_pred(batch):
    wav = batch["audio"][0]["array"]
    feats = torch.from_numpy(wav).float()
    feats = F.layer_norm(feats, feats.shape) # Normalization performed during finetuning
    feats = torch.unsqueeze(feats, 0)
    logits = model(feats).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    batch["transcription"] = processor.batch_decode(predicted_ids)
    return batch

result = kotiria.map(map_to_pred, batched=True, batch_size=1)

print("CER:", cer(result["source_processed"], result["transcription"]))
```

## Citation

```bibtex
@article{romero2024automatic,
  title={Automatic Speech Recognition Advancements for Indigenous Languages of the Americas},
  author={Romero, Monica and G{\'o}mez-Canaval, Sandra and Torre, Ivan G},
  journal={Applied Sciences},
  volume={14},
  number={15},
  pages={6497},
  year={2024},
  publisher={MDPI}
}
```