File size: 1,912 Bytes
c00bc23
 
5a13e32
 
 
 
 
 
 
 
 
04de04e
 
c00bc23
 
5a13e32
 
c00bc23
5a13e32
c00bc23
5a13e32
f7beb12
 
 
 
c00bc23
5a13e32
c00bc23
5a13e32
c00bc23
5a13e32
c00bc23
5a13e32
c00bc23
5a13e32
c00bc23
5a13e32
c00bc23
5a13e32
c00bc23
5a13e32
c00bc23
5a13e32
 
 
 
 
 
 
 
 
 
 
 
c00bc23
5a13e32
c00bc23
f7beb12
 
 
 
 
 
c00bc23
5a13e32
c00bc23
5a13e32
 
 
04de04e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-uyghur-latin
  results: []
language:
- ug
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-mms-1b-uyghur-latin

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
It achieves the following best results on the evaluation set:

- Best Wer: 30.8949%
- Best Cer: 5.9823 %

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Cer Ortho |
|:-------------:|:------:|:----:|:---------------:|:---------:|:---------:|
| 0.3425        | 1.0006 | 1313 | 0.3081          | 35.3122   | 6.8424    |
| 0.3218        | 2.0011 | 2626 | 0.2771          | 31.7204   | 6.1840    |
| 0.3012        | 3.0017 | 3939 | 0.2739          | 30.8949   | 5.9823    |
| 0.2961        | 3.9989 | 5248 | 0.2771          | 31.7116   | 6.1806    |

### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3