File size: 1,912 Bytes
c00bc23 5a13e32 04de04e c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 f7beb12 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 5a13e32 c00bc23 f7beb12 c00bc23 5a13e32 c00bc23 5a13e32 04de04e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-uyghur-latin
results: []
language:
- ug
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-mms-1b-uyghur-latin
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
It achieves the following best results on the evaluation set:
- Best Wer: 30.8949%
- Best Cer: 5.9823 %
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Cer Ortho |
|:-------------:|:------:|:----:|:---------------:|:---------:|:---------:|
| 0.3425 | 1.0006 | 1313 | 0.3081 | 35.3122 | 6.8424 |
| 0.3218 | 2.0011 | 2626 | 0.2771 | 31.7204 | 6.1840 |
| 0.3012 | 3.0017 | 3939 | 0.2739 | 30.8949 | 5.9823 |
| 0.2961 | 3.9989 | 5248 | 0.2771 | 31.7116 | 6.1806 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |