File size: 1,370 Bytes
f647403 1c53fda f647403 3cd7652 1c53fda f96d3a9 1c53fda f995433 1c53fda 81cdc0f 1c53fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
language: "en"
tags:
- roberta
- sentiment
- twitter
widget:
- text: "Oh no. This is bad.."
- text: "To be or not to be."
- text: "Oh Happy Day"
---
This RoBERTa-based model can classify the sentiment of English language text in 3 classes:
- positive π
- neutral π
- negative π
The model was fine-tuned on 5,304 manually annotated social media posts.
The hold-out accuracy is 86.1%.
For details on the training approach see Web Appendix F in Hartmann et al. (2021).
# Application
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="j-hartmann/sentiment-roberta-large-english-3-classes", return_all_scores=True)
classifier("This is so nice!")
```
```python
Output:
[[{'label': 'negative', 'score': 0.00016451838018838316},
{'label': 'neutral', 'score': 0.000174045650055632},
{'label': 'positive', 'score': 0.9996614456176758}]]
```
# Reference
Please cite [this paper](https://journals.sagepub.com/doi/full/10.1177/00222437211037258) when you use our model. Feel free to reach out to [[email protected]](mailto:[email protected]) with any questions or feedback you may have.
```
@article{hartmann2021,
title={The Power of Brand Selfies},
author={Hartmann, Jochen and Heitmann, Mark and Schamp, Christina and Netzer, Oded},
journal={Journal of Marketing Research}
year={2021}
}
``` |