Upload model
Browse files- config.json +2 -1
- diy_model.py +64 -0
config.json
CHANGED
|
@@ -3,7 +3,8 @@
|
|
| 3 |
"ResnetModelForImageClassification"
|
| 4 |
],
|
| 5 |
"auto_map": {
|
| 6 |
-
"AutoConfig": "diy_config.ResnetConfig"
|
|
|
|
| 7 |
},
|
| 8 |
"avg_down": true,
|
| 9 |
"base_width": 64,
|
|
|
|
| 3 |
"ResnetModelForImageClassification"
|
| 4 |
],
|
| 5 |
"auto_map": {
|
| 6 |
+
"AutoConfig": "diy_config.ResnetConfig",
|
| 7 |
+
"AutoModelForImageClassification": "diy_model.ResnetModelForImageClassification"
|
| 8 |
},
|
| 9 |
"avg_down": true,
|
| 10 |
"base_width": 64,
|
diy_model.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PreTrainedModel
|
| 2 |
+
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
|
| 3 |
+
from diy_config import ResnetConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ResnetModel(PreTrainedModel):
|
| 10 |
+
config_class = ResnetConfig
|
| 11 |
+
|
| 12 |
+
def __init__(self, config):
|
| 13 |
+
super().__init__(config)
|
| 14 |
+
block_layer = BLOCK_MAPPING[config.block_type]
|
| 15 |
+
self.model = ResNet(
|
| 16 |
+
block_layer,
|
| 17 |
+
config.layers,
|
| 18 |
+
num_classes=config.num_classes,
|
| 19 |
+
in_chans=config.input_channels,
|
| 20 |
+
cardinality=config.cardinality,
|
| 21 |
+
base_width=config.base_width,
|
| 22 |
+
stem_width=config.stem_width,
|
| 23 |
+
stem_type=config.stem_type,
|
| 24 |
+
avg_down=config.avg_down,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def forward(self, tensor):
|
| 28 |
+
return self.model.forward_features(tensor)
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class ResnetModelForImageClassification(PreTrainedModel):
|
| 34 |
+
config_class = ResnetConfig
|
| 35 |
+
|
| 36 |
+
def __init__(self, config):
|
| 37 |
+
super().__init__(config)
|
| 38 |
+
block_layer = BLOCK_MAPPING[config.block_type]
|
| 39 |
+
self.model = ResNet(
|
| 40 |
+
block_layer,
|
| 41 |
+
config.layers,
|
| 42 |
+
num_classes=config.num_classes,
|
| 43 |
+
in_chans=config.input_channels,
|
| 44 |
+
cardinality=config.cardinality,
|
| 45 |
+
base_width=config.base_width,
|
| 46 |
+
stem_width=config.stem_width,
|
| 47 |
+
stem_type=config.stem_type,
|
| 48 |
+
avg_down=config.avg_down,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
def forward(self, tensor, labels=None):
|
| 52 |
+
logits = self.model(tensor)
|
| 53 |
+
if labels is not None:
|
| 54 |
+
loss = torch.nn.functional.cross_entropy(logits, labels)
|
| 55 |
+
return {"loss": loss, "logits": logits}
|
| 56 |
+
return {"logits": logits}
|
| 57 |
+
|
| 58 |
+
# resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
|
| 59 |
+
# resnet50d = ResnetModelForImageClassification(resnet50d_config)
|
| 60 |
+
# print(resnet50d)
|
| 61 |
+
# import timm
|
| 62 |
+
#
|
| 63 |
+
# pretrained_model = timm.create_model("resnet50d", pretrained=True)
|
| 64 |
+
# resnet50d.model.load_state_dict(pretrained_model.state_dict())
|