File size: 2,679 Bytes
5e1a098 4e135a5 5e1a098 4e135a5 5e1a098 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_deepseek
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_deepseek
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3360
- Accuracy: 0.8824
- F1: 0.9231
- Precision: 0.9231
- Recall: 0.9231
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6891 | 1.0 | 46 | 0.9745 | 0.7 | 0.8235 | 0.7 | 1.0 |
| 0.5473 | 2.0 | 92 | 0.5183 | 0.7 | 0.8235 | 0.7 | 1.0 |
| 0.3445 | 3.0 | 138 | 0.3540 | 0.9 | 0.9333 | 0.875 | 1.0 |
| 0.1769 | 4.0 | 184 | 0.5051 | 0.9 | 0.9333 | 0.875 | 1.0 |
| 0.0387 | 5.0 | 230 | 0.6412 | 0.9 | 0.9333 | 0.875 | 1.0 |
| 0.0116 | 6.0 | 276 | 0.2695 | 0.9 | 0.9333 | 0.875 | 1.0 |
| 0.0005 | 7.0 | 322 | 0.8522 | 0.9 | 0.9333 | 0.875 | 1.0 |
| 0.0 | 8.0 | 368 | 0.5587 | 0.9 | 0.9333 | 0.875 | 1.0 |
| 0.0 | 9.0 | 414 | 0.5669 | 0.9 | 0.9333 | 0.875 | 1.0 |
| 0.0 | 10.0 | 460 | 0.5103 | 0.9 | 0.9333 | 0.875 | 1.0 |
| 0.0 | 11.0 | 506 | 0.5969 | 0.9 | 0.9333 | 0.875 | 1.0 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|