File size: 5,725 Bytes
753f935
 
423499e
d866300
 
 
 
 
 
 
 
 
 
3d9619d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d866300
3d9619d
 
 
 
 
d866300
 
3d9619d
 
d866300
3d9619d
 
d866300
3d9619d
 
 
 
 
 
 
 
d866300
3d9619d
d866300
3d9619d
 
 
 
 
d866300
3d9619d
 
d866300
3d9619d
 
 
 
 
 
d866300
3d9619d
d866300
3d9619d
d866300
3d9619d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d866300
3d9619d
d866300
3d9619d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d866300
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
library_name: transformers
pipeline_tag: image-text-to-text
---

## How to Use the *ferret-gemma* Model

Please download and save `builder.py`, `conversation.py` locally.

```python
import torch
from PIL import Image
from conversation import conv_templates
from builder import load_pretrained_model  # Assuming this is your custom model loader
from functools import partial
import numpy as np

# define the task categories
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']

# function to generate the mask
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
    """
    Generates a region mask based on provided coordinates.
    Handles both point and box input.
    """
    if mask is not None:
        assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
    coor_mask = np.zeros((raw_w, raw_h))

    # if it's a point (2 coordinates)
    if len(coor) == 2:
        span = 5  # Define the span for the point
        x_min = max(0, coor[0] - span)
        x_max = min(raw_w, coor[0] + span + 1)
        y_min = max(0, coor[1] - span)
        y_max = min(raw_h, coor[1] + span + 1)
        coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
        assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"

    # if it's a box (4 coordinates)
    elif len(coor) == 4:
        coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
        if mask is not None:
            coor_mask = coor_mask * mask

    # Convert to torch tensor and ensure it contains non-zero values
    coor_mask = torch.from_numpy(coor_mask)
    assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("

    return coor_mask
```
### Now, define the infer function
```python
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct"):
    img = Image.open(image_path).convert('RGB')

    # this loads the model, image processor and tokenizer
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)

    # define the image size (e.g., 224x224 or 336x336)
    image_size = {"height": 336, "width": 336}

    # process the image
    image_tensor = image_processor.preprocess(
        img,
        return_tensors='pt',
        do_resize=True,
        do_center_crop=False,
        size=(image_size['height'], image_size['width'])
    )['pixel_values'][0].unsqueeze(0)

    image_tensor = image_tensor.half().cuda()

    # generate the prompt per template requirement
    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], prompt)
    conv.append_message(conv.roles[1], None)
    prompt_input = conv.get_prompt()

    # tokenize prompt
    input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()

    # region mask logic (if region is provided)
    region_masks = None
    if region is not None:
        raw_w, raw_h = img.size
        region_masks = generate_mask_for_feature(region, raw_w, raw_h).unsqueeze(0).cuda().half()
        region_masks = [[region_masks]]  # Wrap the mask in lists as expected by the model

    # generate model output
    with torch.inference_mode():
        # Use region_masks in model's forward call
        model.orig_forward = model.forward
        model.forward = partial(
            model.orig_forward,
            region_masks=region_masks
        )
        output_ids = model.generate(
            input_ids,
            images=image_tensor,
            max_new_tokens=1024,
            num_beams=1,
            region_masks=region_masks,  # pass the region mask to the model
            image_sizes=[img.size]
        )
        model.forward = model.orig_forward

    # we decode the output
    output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
    return output_text.strip()
```

# We also define a task-specific inference function
```python
def infer_ui_task(image_path, prompt, model_path, task, region=None):
    """
    Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
    """
    if task in box_in_tasks and region is None:
        raise ValueError(f"Task {task} requires a bounding box region.")
    
    if task in box_in_tasks:
        print(f"Processing {task} with bounding box region.")
        return infer_single_prompt(image_path, prompt, model_path, region)
    
    elif task in box_out_tasks:
        print(f"Processing {task} without bounding box region.")
        return infer_single_prompt(image_path, prompt, model_path)
    
    elif task in no_box_tasks:
        print(f"Processing {task} without image or bounding box.")
        return infer_single_prompt(image_path, prompt, model_path)
    
    else:
        raise ValueError(f"Unknown task type: {task}")
```

### Usage:
```python
# Example image and model paths
image_path = 'image.jpg'
model_path = 'jadechoghari/ferret-gemma'

# Task requiring bounding box
task = 'widgetcaptions'
region = (50, 50, 200, 200)
result = infer_ui_task(image_path, "Describe the contents of the box.", model_path, task, region=region)
print("Result:", result)

# Task not requiring bounding box
task = 'conversation_interaction'
result = infer_ui_task(image_path, "How do I navigate to the Games tab?", model_path, task)
print("Result:", result)

# Task with no image processing
task = 'detailed_description'
result = infer_ui_task(image_path, "Please describe the screen in detail.", model_path, task)
print("Result:", result)
```