File size: 3,719 Bytes
753f935 d866300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
library_name: transformers
---
---
## How to Use the *ferret-gemma* Model
Please download and save `builder.py`, `conversation.py` locally.
### Basic Text Generation
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# load the model and tokenizer
model_name = "jadechoghari/ferret-gemma"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
# give input text
input_text = "The United States of America is a country situated on earth"
# tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda" if torch.cuda.is_available() else "cpu")
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
output = model.generate(inputs['input_ids'], max_length=50, num_return_sequences=1)
# decode and print the output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
### Image and Text Generation
```python
import torch
from PIL import Image
from conversation import conv_templates
from builder import load_pretrained_model # custom model loader
# load model and tokenizer, then preprocess an image
def infer_single_prompt(image_path, prompt, model_path):
img = Image.open(image_path).convert('RGB')
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "ferret_gemma")
image_tensor = image_processor.preprocess(img, return_tensors='pt', size=(336, 336))['pixel_values'][0].unsqueeze(0).half()
# prepare prompt
conv = conv_templates["ferret_gemma_instruct"].copy()
conv.append_message(conv.roles[0], f"Image and prompt: {prompt}")
input_ids = tokenizer(conv.get_prompt(), return_tensors='pt')['input_ids'].cuda()
image_tensor = image_tensor.cuda()
# generate text output
with torch.inference_mode():
output_ids = model.generate(input_ids, images=image_tensor, max_new_tokens=1024)
# decode the output
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text.strip()
# Usage
result = infer_single_prompt("image.jpg", "Describe the contents of the image.", "jadechoghari/ferret-gemma")
print(result)
```
### Text, Image, and Bounding Box
```python
import torch
from PIL import Image
from functools import partial
from builder import load_pretrained_model
# generates a bounding box mask
def generate_mask_for_feature(coor, img_w, img_h):
coor_mask = torch.zeros((img_w, img_h))
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
return coor_mask
def infer_with_bounding_box(image_path, prompt, model_path, region):
img = Image.open(image_path).convert('RGB')
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "ferret_gemma")
image_tensor = image_processor.preprocess(img, return_tensors='pt', size=(336, 336))['pixel_values'][0].unsqueeze(0).half().cuda()
input_ids = tokenizer(f"Image and prompt: {prompt}", return_tensors='pt')['input_ids'].cuda()
# create region mask
mask = generate_mask_for_feature(region, *img.size).unsqueeze(0).half().cuda()
# generate output with region mask
with torch.inference_mode():
model.orig_forward = model.forward
model.forward = partial(model.orig_forward, region_masks=[[mask]])
output_ids = model.generate(input_ids, images=image_tensor, max_new_tokens=1024)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text.strip()
# Usage
result = infer_with_bounding_box("image.jpg", "Describe the contents of the box.", "jadechoghari/ferret-gemma", (50, 50, 200, 200))
print(result)
``` |