jadechoghari
commited on
Commit
•
6d56da9
1
Parent(s):
a5dd8d6
mega update
Browse files- inference.py +236 -21
inference.py
CHANGED
@@ -3,13 +3,198 @@ from PIL import Image
|
|
3 |
from conversation import conv_templates
|
4 |
from builder import load_pretrained_model # Assuming this is your custom model loader
|
5 |
from functools import partial
|
|
|
|
|
|
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# define the task categories
|
9 |
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
|
10 |
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
|
11 |
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# function to generate the mask
|
14 |
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
|
15 |
"""
|
@@ -36,32 +221,29 @@ def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
|
|
36 |
if mask is not None:
|
37 |
coor_mask = coor_mask * mask
|
38 |
|
39 |
-
#
|
40 |
coor_mask = torch.from_numpy(coor_mask)
|
41 |
assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("
|
42 |
|
|
|
43 |
return coor_mask
|
44 |
|
45 |
|
46 |
-
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct"):
|
47 |
img = Image.open(image_path).convert('RGB')
|
48 |
|
49 |
# this loads the model, image processor and tokenizer
|
50 |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
51 |
-
|
52 |
-
# define the image size (e.g., 224x224 or 336x336)
|
53 |
image_size = {"height": 336, "width": 336}
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
img,
|
58 |
-
return_tensors='pt',
|
59 |
-
do_resize=True,
|
60 |
-
do_center_crop=False,
|
61 |
-
size=(image_size['height'], image_size['width'])
|
62 |
-
)['pixel_values'][0].unsqueeze(0)
|
63 |
|
64 |
-
|
|
|
|
|
|
|
65 |
|
66 |
# generate the prompt per template requirement
|
67 |
conv = conv_templates[conv_mode].copy()
|
@@ -69,16 +251,45 @@ def infer_single_prompt(image_path, prompt, model_path, region=None, model_name=
|
|
69 |
conv.append_message(conv.roles[1], None)
|
70 |
prompt_input = conv.get_prompt()
|
71 |
|
72 |
-
# tokenize prompt
|
73 |
input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# region mask logic (if region is provided)
|
76 |
region_masks = None
|
77 |
-
if region is not None:
|
|
|
78 |
raw_w, raw_h = img.size
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# generate model output
|
83 |
with torch.inference_mode():
|
84 |
# Use region_masks in model's forward call
|
@@ -87,9 +298,10 @@ def infer_single_prompt(image_path, prompt, model_path, region=None, model_name=
|
|
87 |
model.orig_forward,
|
88 |
region_masks=region_masks
|
89 |
)
|
|
|
90 |
output_ids = model.generate(
|
91 |
input_ids,
|
92 |
-
images=
|
93 |
max_new_tokens=1024,
|
94 |
num_beams=1,
|
95 |
region_masks=region_masks, # pass the region mask to the model
|
@@ -102,16 +314,19 @@ def infer_single_prompt(image_path, prompt, model_path, region=None, model_name=
|
|
102 |
return output_text.strip()
|
103 |
|
104 |
# We also define a task-specific inference function
|
105 |
-
def infer_ui_task(image_path, prompt, model_path, task, region=None):
|
|
|
106 |
"""
|
107 |
Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
|
108 |
"""
|
|
|
|
|
109 |
if task in box_in_tasks and region is None:
|
110 |
raise ValueError(f"Task {task} requires a bounding box region.")
|
111 |
|
112 |
if task in box_in_tasks:
|
113 |
print(f"Processing {task} with bounding box region.")
|
114 |
-
return infer_single_prompt(image_path, prompt, model_path, region)
|
115 |
|
116 |
elif task in box_out_tasks:
|
117 |
print(f"Processing {task} without bounding box region.")
|
@@ -122,4 +337,4 @@ def infer_ui_task(image_path, prompt, model_path, task, region=None):
|
|
122 |
return infer_single_prompt(image_path, prompt, model_path)
|
123 |
|
124 |
else:
|
125 |
-
raise ValueError(f"Unknown task type: {task}")
|
|
|
3 |
from conversation import conv_templates
|
4 |
from builder import load_pretrained_model # Assuming this is your custom model loader
|
5 |
from functools import partial
|
6 |
+
from typing import Optional, Callable
|
7 |
+
import ast
|
8 |
+
import math
|
9 |
import numpy as np
|
10 |
+
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
|
11 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
12 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
13 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
14 |
+
VOCAB_IMAGE_W = 1000 # 224
|
15 |
+
VOCAB_IMAGE_H = 1000 # 224
|
16 |
+
IMAGE_TOKEN_INDEX = -200
|
17 |
+
|
18 |
|
19 |
# define the task categories
|
20 |
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
|
21 |
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
|
22 |
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
|
23 |
|
24 |
+
def get_bbox_coor(box, ratio_w, ratio_h):
|
25 |
+
return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h
|
26 |
+
|
27 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
28 |
+
if '<image>' in prompt:
|
29 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
30 |
+
input_ids = []
|
31 |
+
for i, chunk in enumerate(prompt_chunks):
|
32 |
+
input_ids.extend(chunk)
|
33 |
+
if i < len(prompt_chunks) - 1:
|
34 |
+
input_ids.append(image_token_index)
|
35 |
+
else:
|
36 |
+
input_ids = tokenizer(prompt).input_ids
|
37 |
+
# if return_tensors == 'pt':
|
38 |
+
# import torch
|
39 |
+
# input_ids = torch.tensor(input_ids).unsqueeze(0)
|
40 |
+
|
41 |
+
return input_ids
|
42 |
+
|
43 |
+
|
44 |
+
def expand2square(pil_img, background_color):
|
45 |
+
width, height = pil_img.size
|
46 |
+
if width == height:
|
47 |
+
return pil_img
|
48 |
+
elif width > height:
|
49 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
50 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
51 |
+
return result
|
52 |
+
else:
|
53 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
54 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
55 |
+
return result
|
56 |
+
|
57 |
+
def select_best_resolution(original_size, possible_resolutions):
|
58 |
+
"""
|
59 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
63 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
tuple: The best fit resolution in the format (width, height).
|
67 |
+
"""
|
68 |
+
original_width, original_height = original_size
|
69 |
+
best_fit = None
|
70 |
+
max_effective_resolution = 0
|
71 |
+
min_wasted_resolution = float('inf')
|
72 |
+
|
73 |
+
for width, height in possible_resolutions:
|
74 |
+
scale = min(width / original_width, height / original_height)
|
75 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
76 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
77 |
+
wasted_resolution = (width * height) - effective_resolution
|
78 |
+
|
79 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
80 |
+
max_effective_resolution = effective_resolution
|
81 |
+
min_wasted_resolution = wasted_resolution
|
82 |
+
best_fit = (width, height)
|
83 |
+
|
84 |
+
return best_fit
|
85 |
+
|
86 |
+
def divide_to_patches(image, patch_size):
|
87 |
+
"""
|
88 |
+
Divides an image into patches of a specified size.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
image (PIL.Image.Image): The input image.
|
92 |
+
patch_size (int): The size of each patch.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
96 |
+
"""
|
97 |
+
patches = []
|
98 |
+
width, height = image.size
|
99 |
+
for i in range(0, height, patch_size):
|
100 |
+
for j in range(0, width, patch_size):
|
101 |
+
box = (j, i, j + patch_size, i + patch_size)
|
102 |
+
patch = image.crop(box)
|
103 |
+
patches.append(patch)
|
104 |
+
|
105 |
+
return patches
|
106 |
+
def resize_and_pad_image(image, target_resolution, is_pad=False):
|
107 |
+
"""
|
108 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
109 |
+
Args:
|
110 |
+
image (PIL.Image.Image): The input image.
|
111 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
112 |
+
Returns:
|
113 |
+
PIL.Image.Image: The resized and padded image.
|
114 |
+
"""
|
115 |
+
original_width, original_height = image.size
|
116 |
+
target_width, target_height = target_resolution
|
117 |
+
|
118 |
+
if is_pad:
|
119 |
+
scale_w = target_width / original_width
|
120 |
+
scale_h = target_height / original_height
|
121 |
+
|
122 |
+
if scale_w < scale_h:
|
123 |
+
new_width = target_width
|
124 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
125 |
+
else:
|
126 |
+
new_height = target_height
|
127 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
128 |
+
|
129 |
+
# Resize the image
|
130 |
+
resized_image = image.resize((new_width, new_height))
|
131 |
+
|
132 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
133 |
+
paste_x = (target_width - new_width) // 2
|
134 |
+
paste_y = (target_height - new_height) // 2
|
135 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
136 |
+
else:
|
137 |
+
new_image = image.resize((target_width, target_height))
|
138 |
+
|
139 |
+
return new_image
|
140 |
+
|
141 |
+
def process_anyres_image(image, processor, grid_pinpoints, image_process_func: Optional[Callable] = None):
|
142 |
+
"""
|
143 |
+
Process an image with variable resolutions.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
image (PIL.Image.Image): The input image to be processed.
|
147 |
+
processor: The image processor object.
|
148 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
torch.Tensor: A tensor containing the processed image patches.
|
152 |
+
"""
|
153 |
+
if type(grid_pinpoints) is list:
|
154 |
+
possible_resolutions = grid_pinpoints
|
155 |
+
else:
|
156 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
157 |
+
|
158 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
159 |
+
|
160 |
+
# FIXME: not sure if do_pad or undo_pad may affect the referring side
|
161 |
+
image_padded = resize_and_pad_image(image, best_resolution, is_pad=False)
|
162 |
+
|
163 |
+
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
164 |
+
|
165 |
+
if image_process_func:
|
166 |
+
resized_image_h, resized_image_w = image_process_func.keywords['size']
|
167 |
+
image_original_resize = image.resize((resized_image_w, resized_image_h))
|
168 |
+
image_patches = [image_original_resize] + patches
|
169 |
+
image_patches = [image_process_func(image_patch)['pixel_values'][0]
|
170 |
+
for image_patch in image_patches]
|
171 |
+
else:
|
172 |
+
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
173 |
+
image_patches = [image_original_resize] + patches
|
174 |
+
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
175 |
+
for image_patch in image_patches]
|
176 |
+
|
177 |
+
return torch.stack(image_patches, dim=0)
|
178 |
+
|
179 |
+
|
180 |
+
def process_images(images, image_processor, model_cfg, image_process_func: Optional[Callable] = None):
|
181 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
182 |
+
new_images = []
|
183 |
+
if image_aspect_ratio == 'pad':
|
184 |
+
for image in images:
|
185 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
186 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
187 |
+
new_images.append(image)
|
188 |
+
elif image_aspect_ratio == "anyres":
|
189 |
+
# image_processor(images, return_tensors='pt', do_resize=True, do_center_crop=False, size=[image_h, image_w])['pixel_values']
|
190 |
+
for image in images:
|
191 |
+
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints, image_process_func=image_process_func)
|
192 |
+
new_images.append(image)
|
193 |
+
else:
|
194 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
195 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
196 |
+
new_images = torch.stack(new_images, dim=0)
|
197 |
+
return new_images
|
198 |
# function to generate the mask
|
199 |
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
|
200 |
"""
|
|
|
221 |
if mask is not None:
|
222 |
coor_mask = coor_mask * mask
|
223 |
|
224 |
+
# convert to torch tensor and ensure it contains non-zero values
|
225 |
coor_mask = torch.from_numpy(coor_mask)
|
226 |
assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("
|
227 |
|
228 |
+
|
229 |
return coor_mask
|
230 |
|
231 |
|
232 |
+
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct", add_region_feature=False):
|
233 |
img = Image.open(image_path).convert('RGB')
|
234 |
|
235 |
# this loads the model, image processor and tokenizer
|
236 |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
237 |
+
# define the image size required by clip
|
|
|
238 |
image_size = {"height": 336, "width": 336}
|
239 |
|
240 |
+
if "<image>" in prompt:
|
241 |
+
prompt = prompt.split('\n')[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
+
if model.config.mm_use_im_start_end:
|
244 |
+
prompt = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + prompt
|
245 |
+
else:
|
246 |
+
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
247 |
|
248 |
# generate the prompt per template requirement
|
249 |
conv = conv_templates[conv_mode].copy()
|
|
|
251 |
conv.append_message(conv.roles[1], None)
|
252 |
prompt_input = conv.get_prompt()
|
253 |
|
|
|
254 |
input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
|
255 |
|
256 |
+
# raw_w, raw_h = img.size # check if shouldnt be width and height
|
257 |
+
raw_w = image_size["width"]
|
258 |
+
raw_h = image_size["height"]
|
259 |
+
if model.config.image_aspect_ratio == "square_nocrop":
|
260 |
+
image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True,
|
261 |
+
do_center_crop=False, size=[raw_h, raw_w])['pixel_values'][0]
|
262 |
+
elif model.config.image_aspect_ratio == "anyres":
|
263 |
+
image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[raw_h, raw_h])
|
264 |
+
image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0]
|
265 |
+
else:
|
266 |
+
image_tensor = process_images([img], image_processor, model.config)[0]
|
267 |
+
|
268 |
+
images = image_tensor.unsqueeze(0).to(torch.float16).cuda()
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
# region mask logic (if region is provided)
|
273 |
region_masks = None
|
274 |
+
if add_region_feature and region is not None:
|
275 |
+
# box_in is true
|
276 |
raw_w, raw_h = img.size
|
277 |
+
ratio_w = VOCAB_IMAGE_W * 1.0 / raw_w
|
278 |
+
ratio_h = VOCAB_IMAGE_H * 1.0 / raw_h
|
279 |
+
# preprocess the region
|
280 |
+
box_x1, box_y1, box_x2, box_y2 = region
|
281 |
+
box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=region, ratio_h=ratio_h, ratio_w=ratio_w)
|
282 |
+
region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2]
|
283 |
|
284 |
+
region_masks = generate_mask_for_feature(region_coordinate_raw, raw_w, raw_h).unsqueeze(0).cuda().half()
|
285 |
+
region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]]
|
286 |
+
prompt_input = prompt_input.replace("<bbox_location0>", f"[{box_x1_textvocab}, {box_y1_textvocab}, {box_x2_textvocab}, {box_y2_textvocab}] {DEFAULT_REGION_FEA_TOKEN}")
|
287 |
+
|
288 |
+
# tokenize prompt
|
289 |
+
# input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
# generate model output
|
294 |
with torch.inference_mode():
|
295 |
# Use region_masks in model's forward call
|
|
|
298 |
model.orig_forward,
|
299 |
region_masks=region_masks
|
300 |
)
|
301 |
+
# explcit add of attention mask
|
302 |
output_ids = model.generate(
|
303 |
input_ids,
|
304 |
+
images=images,
|
305 |
max_new_tokens=1024,
|
306 |
num_beams=1,
|
307 |
region_masks=region_masks, # pass the region mask to the model
|
|
|
314 |
return output_text.strip()
|
315 |
|
316 |
# We also define a task-specific inference function
|
317 |
+
def infer_ui_task(image_path, prompt, model_path, task, region=None, add_region_feature=False):
|
318 |
+
# region = torch.tensor(region).cuda()
|
319 |
"""
|
320 |
Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
|
321 |
"""
|
322 |
+
if region is not None:
|
323 |
+
add_region_feature=True
|
324 |
if task in box_in_tasks and region is None:
|
325 |
raise ValueError(f"Task {task} requires a bounding box region.")
|
326 |
|
327 |
if task in box_in_tasks:
|
328 |
print(f"Processing {task} with bounding box region.")
|
329 |
+
return infer_single_prompt(image_path, prompt, model_path, region, add_region_feature=add_region_feature)
|
330 |
|
331 |
elif task in box_out_tasks:
|
332 |
print(f"Processing {task} without bounding box region.")
|
|
|
337 |
return infer_single_prompt(image_path, prompt, model_path)
|
338 |
|
339 |
else:
|
340 |
+
raise ValueError(f"Unknown task type: {task}")
|