jadechoghari
commited on
Create model_UI.py
Browse files- model_UI.py +256 -0
model_UI.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_REGION_FEA_TOKEN, VOCAB_IMAGE_W, VOCAB_IMAGE_H
|
8 |
+
from conversation import conv_templates, SeparatorStyle
|
9 |
+
from builder import load_pretrained_model
|
10 |
+
from utils import disable_torch_init
|
11 |
+
from mm_utils import tokenizer_image_token, process_images
|
12 |
+
|
13 |
+
from PIL import Image
|
14 |
+
import math
|
15 |
+
import pdb
|
16 |
+
import numpy as np
|
17 |
+
from copy import deepcopy
|
18 |
+
from functools import partial
|
19 |
+
|
20 |
+
|
21 |
+
def split_list(lst, n):
|
22 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
23 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
24 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
25 |
+
|
26 |
+
def get_chunk(lst, n, k):
|
27 |
+
chunks = split_list(lst, n)
|
28 |
+
return chunks[k]
|
29 |
+
|
30 |
+
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
|
31 |
+
if mask is not None:
|
32 |
+
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
|
33 |
+
coor_mask = np.zeros((raw_w, raw_h))
|
34 |
+
# Assume it samples a point.
|
35 |
+
if len(coor) == 2:
|
36 |
+
# Define window size
|
37 |
+
span = 5
|
38 |
+
# Make sure the window does not exceed array bounds
|
39 |
+
x_min = max(0, coor[0] - span)
|
40 |
+
x_max = min(raw_w, coor[0] + span + 1)
|
41 |
+
y_min = max(0, coor[1] - span)
|
42 |
+
y_max = min(raw_h, coor[1] + span + 1)
|
43 |
+
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
|
44 |
+
assert (coor_mask==1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
|
45 |
+
elif len(coor) == 4:
|
46 |
+
# Box input or Sketch input.
|
47 |
+
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
|
48 |
+
if mask is not None:
|
49 |
+
coor_mask = coor_mask * mask
|
50 |
+
coor_mask = torch.from_numpy(coor_mask)
|
51 |
+
try:
|
52 |
+
assert len(coor_mask.nonzero()) != 0
|
53 |
+
except:
|
54 |
+
pdb.set_trace()
|
55 |
+
return coor_mask
|
56 |
+
|
57 |
+
def get_task_from_file(file):
|
58 |
+
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
|
59 |
+
# box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
|
60 |
+
# no_box = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
|
61 |
+
if any(task in file for task in box_in_tasks):
|
62 |
+
return 'box_in'
|
63 |
+
else:
|
64 |
+
return 'no_box_in'
|
65 |
+
# elif any(task in file for task in box_out_tasks):
|
66 |
+
# return 'box_out'
|
67 |
+
# elif any(task in file for task in no_box):
|
68 |
+
# return 'no_box'
|
69 |
+
|
70 |
+
def get_bbox_coor(box, ratio_w, ratio_h):
|
71 |
+
return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h
|
72 |
+
|
73 |
+
def get_model_name_from_path(model_path):
|
74 |
+
if 'gemma' in model_path:
|
75 |
+
return 'ferret_gemma'
|
76 |
+
elif 'llama' or 'vicuna' in model_path:
|
77 |
+
return 'ferret_llama'
|
78 |
+
else:
|
79 |
+
raise ValueError(f"No model matched for {model_path}")
|
80 |
+
|
81 |
+
class UIData:
|
82 |
+
def __init__(self, data_path, image_path, args) -> None:
|
83 |
+
self.obj_list = json.load(open(data_path, 'r'))
|
84 |
+
self.image_path = image_path
|
85 |
+
self.args = args
|
86 |
+
self._ids = range(len(self.obj_list))
|
87 |
+
self.task = get_task_from_file(data_path)
|
88 |
+
|
89 |
+
@property
|
90 |
+
def ids(self):
|
91 |
+
return deepcopy(self._ids)
|
92 |
+
|
93 |
+
def __getitem__(self, idx):
|
94 |
+
i = self.obj_list[idx]
|
95 |
+
|
96 |
+
# image stuff
|
97 |
+
image_path_i = os.path.join(self.image_path, i['image'].split('/')[-1])
|
98 |
+
image = Image.open(image_path_i).convert('RGB')
|
99 |
+
|
100 |
+
q_turn = i['conversations'][0]['value']
|
101 |
+
if "<image>" in q_turn:
|
102 |
+
prompt = q_turn.split('\n')[1]
|
103 |
+
else:
|
104 |
+
prompt = q_turn
|
105 |
+
i['question'] = prompt
|
106 |
+
i['region_masks'] = None
|
107 |
+
|
108 |
+
if self.task == 'box_in':
|
109 |
+
ratio_w = VOCAB_IMAGE_W * 1.0 / i['image_w']
|
110 |
+
ratio_h = VOCAB_IMAGE_H * 1.0 / i['image_h']
|
111 |
+
|
112 |
+
box = i['box_x1y1x2y2'][0][0]
|
113 |
+
box_x1, box_y1, box_x2, box_y2 = box
|
114 |
+
box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=box, ratio_h=ratio_h, ratio_w=ratio_w)
|
115 |
+
|
116 |
+
if self.args.region_format == 'box':
|
117 |
+
region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2]
|
118 |
+
if args.add_region_feature:
|
119 |
+
i['question'] = prompt.replace('<bbox_location0>', '[{}, {}, {}, {}] {}'.format(int(box_x1_textvocab), int(box_y1_textvocab), int(box_x2_textvocab), int(box_y2_textvocab), DEFAULT_REGION_FEA_TOKEN))
|
120 |
+
generated_mask = generate_mask_for_feature(region_coordinate_raw, raw_w=i['image_w'], raw_h=i['image_h'], mask=None)
|
121 |
+
i['region_masks'] = [generated_mask]
|
122 |
+
else:
|
123 |
+
i['question'] = prompt.replace('<bbox_location0>', '[{}, {}, {}, {}]'.format(int(box_x1_textvocab), int(box_y1_textvocab), int(box_x2_textvocab), int(box_y2_textvocab)))
|
124 |
+
else:
|
125 |
+
raise NotImplementedError(f'{self.args.region_format} is not supported.')
|
126 |
+
|
127 |
+
return image, i, image.size
|
128 |
+
|
129 |
+
def eval_model(args):
|
130 |
+
# Data
|
131 |
+
dataset = UIData(data_path=args.data_path, image_path=args.image_path, args=args)
|
132 |
+
data_ids = dataset.ids
|
133 |
+
|
134 |
+
# Model
|
135 |
+
disable_torch_init()
|
136 |
+
model_path = os.path.expanduser(args.model_path)
|
137 |
+
model_name = get_model_name_from_path(model_path)
|
138 |
+
tokenizer, model, image_processor, context_len = \
|
139 |
+
load_pretrained_model(model_path, args.model_base, model_name)
|
140 |
+
|
141 |
+
chunk_data_ids = get_chunk(data_ids, args.num_chunks, args.chunk_idx)
|
142 |
+
answers_folder = os.path.expanduser(args.answers_file)
|
143 |
+
os.makedirs(answers_folder, exist_ok=True)
|
144 |
+
answers_file = os.path.join(answers_folder, f'{args.chunk_idx}_of_{args.num_chunks}.jsonl')
|
145 |
+
ans_file = open(answers_file, "w")
|
146 |
+
|
147 |
+
for i, id in enumerate(tqdm(chunk_data_ids)):
|
148 |
+
img, ann, image_size = dataset[id]
|
149 |
+
image_path = ann['image']
|
150 |
+
qs = ann["question"]
|
151 |
+
cur_prompt = qs
|
152 |
+
|
153 |
+
if "<image>" in qs:
|
154 |
+
qs = qs.split('\n')[1]
|
155 |
+
|
156 |
+
if model.config.mm_use_im_start_end:
|
157 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
158 |
+
else:
|
159 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
160 |
+
|
161 |
+
conv = conv_templates[args.conv_mode].copy()
|
162 |
+
conv.append_message(conv.roles[0], qs)
|
163 |
+
conv.append_message(conv.roles[1], None)
|
164 |
+
prompt = conv.get_prompt()
|
165 |
+
|
166 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
167 |
+
|
168 |
+
if model.config.image_aspect_ratio == "square_nocrop":
|
169 |
+
image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True,
|
170 |
+
do_center_crop=False, size=[args.image_h, args.image_w])['pixel_values'][0]
|
171 |
+
elif model.config.image_aspect_ratio == "anyres":
|
172 |
+
image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[args.image_h, args.image_w])
|
173 |
+
image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0]
|
174 |
+
else:
|
175 |
+
image_tensor = process_images([img], image_processor, model.config)[0]
|
176 |
+
|
177 |
+
images = image_tensor.unsqueeze(0).to(args.data_type).cuda()
|
178 |
+
|
179 |
+
region_masks = ann['region_masks']
|
180 |
+
|
181 |
+
if region_masks is not None:
|
182 |
+
region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]]
|
183 |
+
else:
|
184 |
+
region_masks = None
|
185 |
+
|
186 |
+
with torch.inference_mode():
|
187 |
+
model.orig_forward = model.forward
|
188 |
+
model.forward = partial(
|
189 |
+
model.orig_forward,
|
190 |
+
region_masks=region_masks
|
191 |
+
)
|
192 |
+
output_ids = model.generate(
|
193 |
+
input_ids,
|
194 |
+
images=images,
|
195 |
+
region_masks=region_masks,
|
196 |
+
image_sizes=[image_size],
|
197 |
+
do_sample=True if args.temperature > 0 else False,
|
198 |
+
temperature=args.temperature,
|
199 |
+
top_p=args.top_p,
|
200 |
+
num_beams=args.num_beams,
|
201 |
+
max_new_tokens=args.max_new_tokens,
|
202 |
+
use_cache=True)
|
203 |
+
model.forward = model.orig_forward
|
204 |
+
|
205 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
206 |
+
outputs = outputs.strip()
|
207 |
+
|
208 |
+
if 'label' in ann:
|
209 |
+
label = ann['label']
|
210 |
+
elif len(ann['conversations']) > 1:
|
211 |
+
label = ann['conversations'][1]['value']
|
212 |
+
else:
|
213 |
+
label = None
|
214 |
+
|
215 |
+
ans_file.write(json.dumps({"id":ann['id'], # +1 offset
|
216 |
+
"image_path":image_path,
|
217 |
+
"prompt": cur_prompt,
|
218 |
+
"text": outputs,
|
219 |
+
"label": label,
|
220 |
+
}) + "\n")
|
221 |
+
ans_file.flush()
|
222 |
+
ans_file.close()
|
223 |
+
|
224 |
+
|
225 |
+
if __name__ == "__main__":
|
226 |
+
parser = argparse.ArgumentParser()
|
227 |
+
parser.add_argument("--model_path", type=str, default="facebook/opt-350m")
|
228 |
+
parser.add_argument("--vision_model_path", type=str, default=None)
|
229 |
+
parser.add_argument("--model_base", type=str, default=None)
|
230 |
+
parser.add_argument("--image_path", type=str, default="")
|
231 |
+
parser.add_argument("--data_path", type=str, default="")
|
232 |
+
parser.add_argument("--answers_file", type=str, default="")
|
233 |
+
parser.add_argument("--conv_mode", type=str, default="ferret_gemma_instruct",
|
234 |
+
help="[ferret_gemma_instruct,ferret_llama_3,ferret_vicuna_v1]")
|
235 |
+
parser.add_argument("--num_chunks", type=int, default=1)
|
236 |
+
parser.add_argument("--chunk_idx", type=int, default=0)
|
237 |
+
parser.add_argument("--image_w", type=int, default=336) # 224
|
238 |
+
parser.add_argument("--image_h", type=int, default=336) # 224
|
239 |
+
parser.add_argument("--add_region_feature", action="store_true")
|
240 |
+
parser.add_argument("--region_format", type=str, default="point", choices=["point", "box", "segment", "free_shape"])
|
241 |
+
parser.add_argument("--no_coor", action="store_true")
|
242 |
+
parser.add_argument("--temperature", type=float, default=0.001)
|
243 |
+
parser.add_argument("--top_p", type=float, default=None)
|
244 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
245 |
+
parser.add_argument("--max_new_tokens", type=int, default=1024)
|
246 |
+
parser.add_argument("--data_type", type=str, default='fp16', choices=['fp16', 'bf16', 'fp32'])
|
247 |
+
args = parser.parse_args()
|
248 |
+
|
249 |
+
if args.data_type == 'fp16':
|
250 |
+
args.data_type = torch.float16
|
251 |
+
elif args.data_type == 'bf16':
|
252 |
+
args.data_type = torch.bfloat16
|
253 |
+
else:
|
254 |
+
args.data_type = torch.float32
|
255 |
+
|
256 |
+
eval_model(args)
|