# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import CrossEntropyLoss from transformers import ( AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM, LlamaModel, ) from transformers.cache_utils import Cache, DynamicCache from transformers.generation.utils import GenerateOutput from transformers.modeling_attn_mask_utils import ( _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, ) from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.utils import logging from cambrian_arch import CambrianMetaForCausalLM, CambrianMetaModel IS_XLA_AVAILABLE = False logger = logging.get_logger(__name__) class CambrianConfig(LlamaConfig): model_type = "cambrian_llama" debug = "debug" class CambrianLlamaModel(CambrianMetaModel, LlamaModel): config_class = CambrianConfig def __init__(self, config: LlamaConfig): super(CambrianLlamaModel, self).__init__(config) def forward( self, # pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`. input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, vision_tower_aux_feature_list: Optional[List[torch.FloatTensor]] = None, vision_tower_aux_attention_masks_list: Optional[List[torch.Tensor]] = None, final_vision_feature_size: Optional[List[tuple]] = None, global_context_feature: Optional[torch.Tensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `config`. else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") # pyre-fixme[16]: `CambrianLlamaModel` has no attribute # `gradient_checkpointing`. # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `training`. if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: # pyre-fixme[9]: past_key_values has type # `Optional[List[FloatTensor]]`; used as `DynamicCache`. # pyre-fixme[6]: For 1st argument expected # `Optional[Tuple[Tuple[FloatTensor]]]` but got # `Optional[List[FloatTensor]]`. past_key_values = DynamicCache.from_legacy_cache(past_key_values) # pyre-fixme[16]: `Optional` has no attribute `get_usable_length`. past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: # pyre-fixme[16]: `Optional` has no attribute `device`. device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `embed_tokens`. inputs_embeds = self.embed_tokens(input_ids) # pyre-fixme[16]: `CambrianLlamaModel` has no attribute # `_use_flash_attention_2`. self._use_flash_attention_2 = getattr(self, "_use_flash_attention_2", False) # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `_use_sdpa`. self._use_sdpa = getattr(self, "_use_sdpa", True) if self._use_flash_attention_2: # 2d mask is passed through the layers attention_mask = ( attention_mask if (attention_mask is not None and 0 in attention_mask) else None ) elif self._use_sdpa and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `layers`. for i, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: # pyre-fixme[16]: `CambrianLlamaModel` has no attribute # `_gradient_checkpointing_func`. layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `norm`. hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = ( next_decoder_cache.to_legacy_cache() # pyre-fixme[61]: `use_legacy_cache` is undefined, or not always # defined. if use_legacy_cache else next_decoder_cache ) if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class CambrianLlamaForCausalLM(LlamaForCausalLM, CambrianMetaForCausalLM): config_class = CambrianConfig def __init__(self, config): super(LlamaForCausalLM, self).__init__(config) self.model = CambrianLlamaModel(config) self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, # pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`. input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, image_aux_attention_masks_list: Optional[List[torch.Tensor]] = None, image_sizes: Optional[List[List[int]]] = None, return_dict: Optional[bool] = None, cache_position=None, ) -> Union[Tuple, CausalLMOutputWithPast]: final_vision_feature_size = None if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels, vision_tower_aux_feature_list, vision_tower_aux_attention_masks_list, final_vision_feature_size, global_context_feature, ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images, image_aux_attention_masks_list, image_sizes, ) if IS_XLA_AVAILABLE: # Very Important for TorchXLA # self.model.gradient_checkpointing = False # pyre-fixme[21]: Could not find module `torch_xla.utils.checkpoint`. from torch_xla.utils.checkpoint import checkpoint # self.model.gradient_checkpointing = True # pyre-fixme[16]: `CambrianLlamaModel` has no attribute # `_gradient_checkpointing_func`. self.model._gradient_checkpointing_func = checkpoint output_attentions = ( output_attentions if output_attentions is not None # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute `config`. else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # training if IS_XLA_AVAILABLE: # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) # pyre-fixme[29]: `CambrianLlamaModel` is not a function. outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, # pyre-fixme[61]: `vision_tower_aux_feature_list` is undefined, or # not always defined. vision_tower_aux_feature_list=vision_tower_aux_feature_list, # pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is # undefined, or not always defined. vision_tower_aux_attention_masks_list=vision_tower_aux_attention_masks_list, final_vision_feature_size=final_vision_feature_size, # pyre-fixme[61]: `global_context_feature` is undefined, or not # always defined. global_context_feature=global_context_feature, ) # inference else: if hasattr(self, "vision_tower_aux_feature_list"): # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) # pyre-fixme[29]: `CambrianLlamaModel` is not a function. outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, vision_tower_aux_feature_list=( # pyre-fixme[61]: `vision_tower_aux_feature_list` is # undefined, or not always defined. vision_tower_aux_feature_list if inputs_embeds is None # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no # attribute `vision_tower_aux_feature_list`. else self.vision_tower_aux_feature_list ), vision_tower_aux_attention_masks_list=( # pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is # undefined, or not always defined. vision_tower_aux_attention_masks_list if inputs_embeds is None # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no # attribute `vision_tower_aux_attention_masks_list`. else self.vision_tower_aux_attention_masks_list ), final_vision_feature_size=( final_vision_feature_size if inputs_embeds is None # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no # attribute `final_vision_feature_size`. else self.final_vision_feature_size ), global_context_feature=( # pyre-fixme[61]: `global_context_feature` is undefined, or # not always defined. global_context_feature if inputs_embeds is None # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no # attribute `global_context_feature`. else self.global_context_feature ), ) else: # pyre-fixme[29]: `CambrianLlamaModel` is not a function. outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, # final_vision_feature_size=final_vision_feature_size, ) hidden_states = outputs[0] if self.config.pretraining_tp > 1: lm_head_slices = self.lm_head.weight.split( self.vocab_size // self.config.pretraining_tp, dim=0 ) logits = [ F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp) ] logits = torch.cat(logits, dim=-1) else: logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, image_sizes: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: ( inputs, position_ids, attention_mask, _, inputs_embeds, _, vision_tower_aux_feature_list, vision_tower_aux_attention_masks_list, final_vision_feature_size, global_context_feature, ) = self.prepare_inputs_labels_for_multimodal( inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes, ) # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute # `vision_tower_aux_feature_list`. self.vision_tower_aux_feature_list = vision_tower_aux_feature_list # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute # `vision_tower_aux_attention_masks_list`. self.vision_tower_aux_attention_masks_list = ( vision_tower_aux_attention_masks_list ) # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute # `final_vision_feature_size`. self.final_vision_feature_size = final_vision_feature_size # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute # `global_context_feature`. self.global_context_feature = global_context_feature else: inputs_embeds = self.get_model().embed_tokens(inputs) # pyre-fixme[16]: `LlamaForCausalLM` has no attribute `generate`. return super().generate( position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs ): images = kwargs.pop("images", None) image_sizes = kwargs.pop("image_sizes", None) inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs, ) if images is not None: inputs["images"] = images if image_sizes is not None: inputs["image_sizes"] = image_sizes return inputs AutoConfig.register("cambrian_llama", CambrianConfig) AutoModelForCausalLM.register(CambrianConfig, CambrianLlamaForCausalLM)