File size: 105,447 Bytes
e0fbbdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
# coding=utf-8
# Copyright 2024 Baidu Inc and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RT-DETR model."""

import math
import os
import warnings
from dataclasses import dataclass
from functools import lru_cache, partial, wraps
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable

from transformers.activations import ACT2CLS, ACT2FN
from transformers.image_transforms import center_to_corners_format, corners_to_center_format
from transformers.modeling_outputs import BaseModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_ninja_available,
    is_torch_cuda_available,
    logging,
    replace_return_docstrings,
)
from transformers.utils.backbone_utils import load_backbone
from config import RTDetrConfig


logger = logging.get_logger(__name__)

MultiScaleDeformableAttention = None


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.load_cuda_kernels
def load_cuda_kernels():
    from torch.utils.cpp_extension import load

    global MultiScaleDeformableAttention

    root = Path(__file__).resolve().parent.parent.parent / "kernels" / "deformable_detr"
    src_files = [
        root / filename
        for filename in [
            "vision.cpp",
            os.path.join("cpu", "ms_deform_attn_cpu.cpp"),
            os.path.join("cuda", "ms_deform_attn_cuda.cu"),
        ]
    ]

    MultiScaleDeformableAttention = load(
        "MultiScaleDeformableAttention",
        src_files,
        with_cuda=True,
        extra_include_paths=[str(root)],
        extra_cflags=["-DWITH_CUDA=1"],
        extra_cuda_cflags=[
            "-DCUDA_HAS_FP16=1",
            "-D__CUDA_NO_HALF_OPERATORS__",
            "-D__CUDA_NO_HALF_CONVERSIONS__",
            "-D__CUDA_NO_HALF2_OPERATORS__",
        ],
    )


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.MultiScaleDeformableAttentionFunction
class MultiScaleDeformableAttentionFunction(Function):
    @staticmethod
    def forward(
        context,
        value,
        value_spatial_shapes,
        value_level_start_index,
        sampling_locations,
        attention_weights,
        im2col_step,
    ):
        context.im2col_step = im2col_step
        output = MultiScaleDeformableAttention.ms_deform_attn_forward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
            context.im2col_step,
        )
        context.save_for_backward(
            value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights
        )
        return output

    @staticmethod
    @once_differentiable
    def backward(context, grad_output):
        (
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
        ) = context.saved_tensors
        grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
            grad_output,
            context.im2col_step,
        )

        return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "RTDetrConfig"
# TODO: Replace all occurrences of the checkpoint with the final one
_CHECKPOINT_FOR_DOC = "PekingU/rtdetr_r50vd"


@dataclass
class RTDetrDecoderOutput(ModelOutput):
    """
    Base class for outputs of the RTDetrDecoder. This class adds two attributes to
    BaseModelOutputWithCrossAttentions, namely:
    - a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
    - a stacked tensor of intermediate reference points.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
            Stacked intermediate hidden states (output of each layer of the decoder).
        intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`):
            Stacked intermediate logits (logits of each layer of the decoder).
        intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
            Stacked intermediate reference points (reference points of each layer of the decoder).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
    """

    last_hidden_state: torch.FloatTensor = None
    intermediate_hidden_states: torch.FloatTensor = None
    intermediate_logits: torch.FloatTensor = None
    intermediate_reference_points: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class RTDetrModelOutput(ModelOutput):
    """
    Base class for outputs of the RT-DETR encoder-decoder model.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.
        intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
            Stacked intermediate hidden states (output of each layer of the decoder).
        intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`):
            Stacked intermediate logits (logits of each layer of the decoder).
        intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
            Stacked intermediate reference points (reference points of each layer of the decoder).
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
            plus the initial embedding outputs.
        decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
            num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
            layer plus the initial embedding outputs.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        init_reference_points (`torch.FloatTensor` of shape  `(batch_size, num_queries, 4)`):
            Initial reference points sent through the Transformer decoder.
        enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
            Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
            picked as region proposals in the encoder stage. Output of bounding box binary classification (i.e.
            foreground and background).
        enc_topk_bboxes (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`):
            Logits of predicted bounding boxes coordinates in the encoder stage.
        enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
            Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
            picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
            foreground and background).
        enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
            Logits of predicted bounding boxes coordinates in the first stage.
        denoising_meta_values (`dict`):
            Extra dictionary for the denoising related values
    """

    last_hidden_state: torch.FloatTensor = None
    intermediate_hidden_states: torch.FloatTensor = None
    intermediate_logits: torch.FloatTensor = None
    intermediate_reference_points: torch.FloatTensor = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    init_reference_points: torch.FloatTensor = None
    enc_topk_logits: Optional[torch.FloatTensor] = None
    enc_topk_bboxes: Optional[torch.FloatTensor] = None
    enc_outputs_class: Optional[torch.FloatTensor] = None
    enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
    denoising_meta_values: Optional[Dict] = None


@dataclass
class RTDetrObjectDetectionOutput(ModelOutput):
    """
    Output type of [`RTDetrForObjectDetection`].

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
            Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
            bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
            scale-invariant IoU loss.
        loss_dict (`Dict`, *optional*):
            A dictionary containing the individual losses. Useful for logging.
        logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
            Classification logits (including no-object) for all queries.
        pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
            Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
            values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
            possible padding). You can use [`~RTDetrImageProcessor.post_process_object_detection`] to retrieve the
            unnormalized (absolute) bounding boxes.
        auxiliary_outputs (`list[Dict]`, *optional*):
            Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
            and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
            `pred_boxes`) for each decoder layer.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.
        intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
            Stacked intermediate hidden states (output of each layer of the decoder).
        intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, config.num_labels)`):
            Stacked intermediate logits (logits of each layer of the decoder).
        intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
            Stacked intermediate reference points (reference points of each layer of the decoder).
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
            plus the initial embedding outputs.
        decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
            num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
            layer plus the initial embedding outputs.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        init_reference_points (`torch.FloatTensor` of shape  `(batch_size, num_queries, 4)`):
            Initial reference points sent through the Transformer decoder.
        enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
            Logits of predicted bounding boxes coordinates in the encoder.
        enc_topk_bboxes (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
            Logits of predicted bounding boxes coordinates in the encoder.
        enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
            Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
            picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
            foreground and background).
        enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
            Logits of predicted bounding boxes coordinates in the first stage.
        denoising_meta_values (`dict`):
            Extra dictionary for the denoising related values
    """

    loss: Optional[torch.FloatTensor] = None
    loss_dict: Optional[Dict] = None
    logits: torch.FloatTensor = None
    pred_boxes: torch.FloatTensor = None
    auxiliary_outputs: Optional[List[Dict]] = None
    last_hidden_state: torch.FloatTensor = None
    intermediate_hidden_states: torch.FloatTensor = None
    intermediate_logits: torch.FloatTensor = None
    intermediate_reference_points: torch.FloatTensor = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    init_reference_points: Optional[Tuple[torch.FloatTensor]] = None
    enc_topk_logits: Optional[torch.FloatTensor] = None
    enc_topk_bboxes: Optional[torch.FloatTensor] = None
    enc_outputs_class: Optional[torch.FloatTensor] = None
    enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
    denoising_meta_values: Optional[Dict] = None


def _get_clones(partial_module, N):
    return nn.ModuleList([partial_module() for i in range(N)])


# Copied from transformers.models.conditional_detr.modeling_conditional_detr.inverse_sigmoid
def inverse_sigmoid(x, eps=1e-5):
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1 / x2)


# Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->RTDetr
class RTDetrFrozenBatchNorm2d(nn.Module):
    """
    BatchNorm2d where the batch statistics and the affine parameters are fixed.

    Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
    torchvision.models.resnet[18,34,50,101] produce nans.
    """

    def __init__(self, n):
        super().__init__()
        self.register_buffer("weight", torch.ones(n))
        self.register_buffer("bias", torch.zeros(n))
        self.register_buffer("running_mean", torch.zeros(n))
        self.register_buffer("running_var", torch.ones(n))

    def _load_from_state_dict(
        self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
    ):
        num_batches_tracked_key = prefix + "num_batches_tracked"
        if num_batches_tracked_key in state_dict:
            del state_dict[num_batches_tracked_key]

        super()._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
        )

    def forward(self, x):
        # move reshapes to the beginning
        # to make it user-friendly
        weight = self.weight.reshape(1, -1, 1, 1)
        bias = self.bias.reshape(1, -1, 1, 1)
        running_var = self.running_var.reshape(1, -1, 1, 1)
        running_mean = self.running_mean.reshape(1, -1, 1, 1)
        epsilon = 1e-5
        scale = weight * (running_var + epsilon).rsqrt()
        bias = bias - running_mean * scale
        return x * scale + bias


# Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->RTDetr
def replace_batch_norm(model):
    r"""
    Recursively replace all `torch.nn.BatchNorm2d` with `RTDetrFrozenBatchNorm2d`.

    Args:
        model (torch.nn.Module):
            input model
    """
    for name, module in model.named_children():
        if isinstance(module, nn.BatchNorm2d):
            new_module = RTDetrFrozenBatchNorm2d(module.num_features)

            if not module.weight.device == torch.device("meta"):
                new_module.weight.data.copy_(module.weight)
                new_module.bias.data.copy_(module.bias)
                new_module.running_mean.data.copy_(module.running_mean)
                new_module.running_var.data.copy_(module.running_var)

            model._modules[name] = new_module

        if len(list(module.children())) > 0:
            replace_batch_norm(module)


def get_contrastive_denoising_training_group(
    targets,
    num_classes,
    num_queries,
    class_embed,
    num_denoising_queries=100,
    label_noise_ratio=0.5,
    box_noise_scale=1.0,
):
    """
    Creates a contrastive denoising training group using ground-truth samples. It adds noise to labels and boxes.

    Args:
        targets (`List[dict]`):
            The target objects, each containing 'class_labels' and 'boxes' for objects in an image.
        num_classes (`int`):
            Total number of classes in the dataset.
        num_queries (`int`):
            Number of query slots in the transformer.
        class_embed (`callable`):
            A function or a model layer to embed class labels.
        num_denoising_queries (`int`, *optional*, defaults to 100):
            Number of denoising queries.
        label_noise_ratio (`float`, *optional*, defaults to 0.5):
            Ratio of noise applied to labels.
        box_noise_scale (`float`, *optional*, defaults to 1.0):
            Scale of noise applied to bounding boxes.
    Returns:
        `tuple` comprising various elements:
        - **input_query_class** (`torch.FloatTensor`) --
          Class queries with applied label noise.
        - **input_query_bbox** (`torch.FloatTensor`) --
          Bounding box queries with applied box noise.
        - **attn_mask** (`torch.FloatTensor`) --
           Attention mask for separating denoising and reconstruction queries.
        - **denoising_meta_values** (`dict`) --
          Metadata including denoising positive indices, number of groups, and split sizes.
    """

    if num_denoising_queries <= 0:
        return None, None, None, None

    num_ground_truths = [len(t["class_labels"]) for t in targets]
    device = targets[0]["class_labels"].device

    max_gt_num = max(num_ground_truths)
    if max_gt_num == 0:
        return None, None, None, None

    num_groups_denoising_queries = num_denoising_queries // max_gt_num
    num_groups_denoising_queries = 1 if num_groups_denoising_queries == 0 else num_groups_denoising_queries
    # pad gt to max_num of a batch
    batch_size = len(num_ground_truths)

    input_query_class = torch.full([batch_size, max_gt_num], num_classes, dtype=torch.int32, device=device)
    input_query_bbox = torch.zeros([batch_size, max_gt_num, 4], device=device)
    pad_gt_mask = torch.zeros([batch_size, max_gt_num], dtype=torch.bool, device=device)

    for i in range(batch_size):
        num_gt = num_ground_truths[i]
        if num_gt > 0:
            input_query_class[i, :num_gt] = targets[i]["class_labels"]
            input_query_bbox[i, :num_gt] = targets[i]["boxes"]
            pad_gt_mask[i, :num_gt] = 1
    # each group has positive and negative queries.
    input_query_class = input_query_class.tile([1, 2 * num_groups_denoising_queries])
    input_query_bbox = input_query_bbox.tile([1, 2 * num_groups_denoising_queries, 1])
    pad_gt_mask = pad_gt_mask.tile([1, 2 * num_groups_denoising_queries])
    # positive and negative mask
    negative_gt_mask = torch.zeros([batch_size, max_gt_num * 2, 1], device=device)
    negative_gt_mask[:, max_gt_num:] = 1
    negative_gt_mask = negative_gt_mask.tile([1, num_groups_denoising_queries, 1])
    positive_gt_mask = 1 - negative_gt_mask
    # contrastive denoising training positive index
    positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
    denoise_positive_idx = torch.nonzero(positive_gt_mask)[:, 1]
    denoise_positive_idx = torch.split(
        denoise_positive_idx, [n * num_groups_denoising_queries for n in num_ground_truths]
    )
    # total denoising queries
    num_denoising_queries = int(max_gt_num * 2 * num_groups_denoising_queries)

    if label_noise_ratio > 0:
        mask = torch.rand_like(input_query_class, dtype=torch.float) < (label_noise_ratio * 0.5)
        # randomly put a new one here
        new_label = torch.randint_like(mask, 0, num_classes, dtype=input_query_class.dtype)
        input_query_class = torch.where(mask & pad_gt_mask, new_label, input_query_class)

    if box_noise_scale > 0:
        known_bbox = center_to_corners_format(input_query_bbox)
        diff = torch.tile(input_query_bbox[..., 2:] * 0.5, [1, 1, 2]) * box_noise_scale
        rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
        rand_part = torch.rand_like(input_query_bbox)
        rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (1 - negative_gt_mask)
        rand_part *= rand_sign
        known_bbox += rand_part * diff
        known_bbox.clip_(min=0.0, max=1.0)
        input_query_bbox = corners_to_center_format(known_bbox)
        input_query_bbox = inverse_sigmoid(input_query_bbox)

    input_query_class = class_embed(input_query_class)

    target_size = num_denoising_queries + num_queries
    attn_mask = torch.full([target_size, target_size], False, dtype=torch.bool, device=device)
    # match query cannot see the reconstruction
    attn_mask[num_denoising_queries:, :num_denoising_queries] = True

    # reconstructions cannot see each other
    for i in range(num_groups_denoising_queries):
        idx_block_start = max_gt_num * 2 * i
        idx_block_end = max_gt_num * 2 * (i + 1)
        attn_mask[idx_block_start:idx_block_end, :idx_block_start] = True
        attn_mask[idx_block_start:idx_block_end, idx_block_end:num_denoising_queries] = True

    denoising_meta_values = {
        "dn_positive_idx": denoise_positive_idx,
        "dn_num_group": num_groups_denoising_queries,
        "dn_num_split": [num_denoising_queries, num_queries],
    }

    return input_query_class, input_query_bbox, attn_mask, denoising_meta_values


class RTDetrConvEncoder(nn.Module):
    """
    Convolutional backbone using the modeling_rt_detr_resnet.py.

    nn.BatchNorm2d layers are replaced by RTDetrFrozenBatchNorm2d as defined above.
    https://github.com/lyuwenyu/RT-DETR/blob/main/rtdetr_pytorch/src/nn/backbone/presnet.py#L142
    """

    def __init__(self, config):
        super().__init__()

        backbone = load_backbone(config)

        if config.freeze_backbone_batch_norms:
            # replace batch norm by frozen batch norm
            with torch.no_grad():
                replace_batch_norm(backbone)
        self.model = backbone
        self.intermediate_channel_sizes = self.model.channels

    def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
        # send pixel_values through the model to get list of feature maps
        features = self.model(pixel_values).feature_maps

        out = []
        for feature_map in features:
            # downsample pixel_mask to match shape of corresponding feature_map
            mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
            out.append((feature_map, mask))
        return out


class RTDetrConvNormLayer(nn.Module):
    def __init__(self, config, in_channels, out_channels, kernel_size, stride, padding=None, activation=None):
        super().__init__()
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding=(kernel_size - 1) // 2 if padding is None else padding,
            bias=False,
        )
        self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
        self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()

    def forward(self, hidden_state):
        hidden_state = self.conv(hidden_state)
        hidden_state = self.norm(hidden_state)
        hidden_state = self.activation(hidden_state)
        return hidden_state


class RTDetrEncoderLayer(nn.Module):
    def __init__(self, config: RTDetrConfig):
        super().__init__()
        self.normalize_before = config.normalize_before

        # self-attention
        self.self_attn = RTDetrMultiheadAttention(
            embed_dim=config.encoder_hidden_dim,
            num_heads=config.num_attention_heads,
            dropout=config.dropout,
        )
        self.self_attn_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.encoder_activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(config.encoder_hidden_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, config.encoder_hidden_dim)
        self.final_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        position_embeddings: torch.Tensor = None,
        output_attentions: bool = False,
        **kwargs,
    ):
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
                values.
            position_embeddings (`torch.FloatTensor`, *optional*):
                Object queries (also called content embeddings), to be added to the hidden states.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_embeddings=position_embeddings,
            output_attentions=output_attentions,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        if not self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        if self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)
        residual = hidden_states

        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)

        hidden_states = self.fc2(hidden_states)

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        hidden_states = residual + hidden_states
        if not self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)

        if self.training:
            if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
                clamp_value = torch.finfo(hidden_states.dtype).max - 1000
                hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class RTDetrRepVggBlock(nn.Module):
    """
    RepVGG architecture block introduced by the work "RepVGG: Making VGG-style ConvNets Great Again".
    """

    def __init__(self, config: RTDetrConfig):
        super().__init__()

        activation = config.activation_function
        hidden_channels = int(config.encoder_hidden_dim * config.hidden_expansion)
        self.conv1 = RTDetrConvNormLayer(config, hidden_channels, hidden_channels, 3, 1, padding=1)
        self.conv2 = RTDetrConvNormLayer(config, hidden_channels, hidden_channels, 1, 1, padding=0)
        self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()

    def forward(self, x):
        y = self.conv1(x) + self.conv2(x)
        return self.activation(y)


class RTDetrCSPRepLayer(nn.Module):
    """
    Cross Stage Partial (CSP) network layer with RepVGG blocks.
    """

    def __init__(self, config: RTDetrConfig):
        super().__init__()

        in_channels = config.encoder_hidden_dim * 2
        out_channels = config.encoder_hidden_dim
        num_blocks = 3
        activation = config.activation_function

        hidden_channels = int(out_channels * config.hidden_expansion)
        self.conv1 = RTDetrConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
        self.conv2 = RTDetrConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
        self.bottlenecks = nn.Sequential(*[RTDetrRepVggBlock(config) for _ in range(num_blocks)])
        if hidden_channels != out_channels:
            self.conv3 = RTDetrConvNormLayer(config, hidden_channels, out_channels, 1, 1, activation=activation)
        else:
            self.conv3 = nn.Identity()

    def forward(self, hidden_state):
        device = hidden_state.device
        hidden_state_1 = self.conv1(hidden_state)
        hidden_state_1 = self.bottlenecks(hidden_state_1).to(device)
        hidden_state_2 = self.conv2(hidden_state).to(device)
        return self.conv3(hidden_state_1 + hidden_state_2)


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention
def multi_scale_deformable_attention(
    value: Tensor,
    value_spatial_shapes: Union[Tensor, List[Tuple]],
    sampling_locations: Tensor,
    attention_weights: Tensor,
) -> Tensor:
    batch_size, _, num_heads, hidden_dim = value.shape
    _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
    value_list = value.split([height * width for height, width in value_spatial_shapes], dim=1)
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []
    for level_id, (height, width) in enumerate(value_spatial_shapes):
        # batch_size, height*width, num_heads, hidden_dim
        # -> batch_size, height*width, num_heads*hidden_dim
        # -> batch_size, num_heads*hidden_dim, height*width
        # -> batch_size*num_heads, hidden_dim, height, width
        value_l_ = (
            value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
        )
        # batch_size, num_queries, num_heads, num_points, 2
        # -> batch_size, num_heads, num_queries, num_points, 2
        # -> batch_size*num_heads, num_queries, num_points, 2
        sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
        # batch_size*num_heads, hidden_dim, num_queries, num_points
        sampling_value_l_ = nn.functional.grid_sample(
            value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
        )
        sampling_value_list.append(sampling_value_l_)
    # (batch_size, num_queries, num_heads, num_levels, num_points)
    # -> (batch_size, num_heads, num_queries, num_levels, num_points)
    # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
    attention_weights = attention_weights.transpose(1, 2).reshape(
        batch_size * num_heads, 1, num_queries, num_levels * num_points
    )
    output = (
        (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
        .sum(-1)
        .view(batch_size, num_heads * hidden_dim, num_queries)
    )
    return output.transpose(1, 2).contiguous()


# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->RTDetr
class RTDetrMultiscaleDeformableAttention(nn.Module):
    """
    Multiscale deformable attention as proposed in Deformable DETR.
    """

    def __init__(self, config: RTDetrConfig, num_heads: int, n_points: int):
        super().__init__()

        kernel_loaded = MultiScaleDeformableAttention is not None
        if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
            try:
                load_cuda_kernels()
            except Exception as e:
                logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")

        if config.d_model % num_heads != 0:
            raise ValueError(
                f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
            )
        dim_per_head = config.d_model // num_heads
        # check if dim_per_head is power of 2
        if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
            warnings.warn(
                "You'd better set embed_dim (d_model) in RTDetrMultiscaleDeformableAttention to make the"
                " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
                " implementation."
            )

        self.im2col_step = 64

        self.d_model = config.d_model
        self.n_levels = config.num_feature_levels
        self.n_heads = num_heads
        self.n_points = n_points

        # now n_points can be a list
        if isinstance(n_points, list):
            assert len(n_points) == self.n_levels, ''
            n_points_list = n_points
        else:
            n_points_list = [n_points for _ in range(self.n_levels)]

        self.n_points_list = n_points
        
        num_points_scale = [1/n for n in n_points for _ in range(n)]
        self.register_buffer('num_points_scale', torch.tensor(num_points_scale, dtype=torch.float32))

        self.total_points = num_heads * sum(n_points_list)


        ## stop

        

        self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
        self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
        self.value_proj = nn.Linear(config.d_model, config.d_model)
        self.output_proj = nn.Linear(config.d_model, config.d_model)

        self.disable_custom_kernels = config.disable_custom_kernels

    def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
        return tensor if position_embeddings is None else tensor + position_embeddings

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        position_embeddings: Optional[torch.Tensor] = None,
        reference_points=None,
        spatial_shapes=None,
        spatial_shapes_list=None,
        level_start_index=None,
        output_attentions: bool = False,
    ):
        # add position embeddings to the hidden states before projecting to queries and keys
        if position_embeddings is not None:
            hidden_states = self.with_pos_embed(hidden_states, position_embeddings)

        batch_size, num_queries, _ = hidden_states.shape
        batch_size, sequence_length, _ = encoder_hidden_states.shape
        total_elements = sum(height * width for height, width in spatial_shapes_list)
        if total_elements != sequence_length:
            raise ValueError(
                "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
            )

        value = self.value_proj(encoder_hidden_states)
        if attention_mask is not None:
            # we invert the attention_mask
            value = value.masked_fill(~attention_mask[..., None], float(0))
        value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
        sampling_offsets = self.sampling_offsets(hidden_states).view(
            batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
        )
        attention_weights = self.attention_weights(hidden_states).view(
            batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
        )
        attention_weights = F.softmax(attention_weights, -1).view(
            batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
        )
        # batch_size, num_queries, n_heads, n_levels, n_points, 2
        num_coordinates = reference_points.shape[-1]
        if num_coordinates == 2:
            offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
            sampling_locations = (
                reference_points[:, :, None, :, None, :]
                + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
            )
        elif num_coordinates == 4:
            sampling_locations = (
                reference_points[:, :, None, :, None, :2]
                + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
            )

            num_points_scale = self.num_points_scale.to(dtype=hidden_states.dtype).unsqueeze(-1)
            offset = sampling_offsets * num_points_scale * reference_points[:, :, None, :, 2:] * self.offset_scale
            sampling_locations = reference_points[:, :, None, :, :2] + offset
        else:
            raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")

        if self.disable_custom_kernels or MultiScaleDeformableAttention is None:
            # PyTorch implementation
            output = multi_scale_deformable_attention(
                value, spatial_shapes_list, sampling_locations, attention_weights
            )
        else:
            try:
                # custom kernel
                output = MultiScaleDeformableAttentionFunction.apply(
                    value,
                    spatial_shapes,
                    level_start_index,
                    sampling_locations,
                    attention_weights,
                    self.im2col_step,
                )
            except Exception:
                # PyTorch implementation
                output = multi_scale_deformable_attention(
                    value, spatial_shapes_list, sampling_locations, attention_weights
                )
        output = self.output_proj(output)

        return output, attention_weights


class RTDetrMultiheadAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper.

    Here, we add position embeddings to the queries and keys (as explained in the Deformable DETR paper).
    """

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        if self.head_dim * num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {num_heads})."
            )
        self.scaling = self.head_dim**-0.5

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _reshape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
        return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
        return tensor if position_embeddings is None else tensor + position_embeddings

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_embeddings: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        batch_size, target_len, embed_dim = hidden_states.size()
        # add position embeddings to the hidden states before projecting to queries and keys
        if position_embeddings is not None:
            hidden_states_original = hidden_states
            hidden_states = self.with_pos_embed(hidden_states, position_embeddings)

        # get queries, keys and values
        query_states = self.q_proj(hidden_states) * self.scaling
        key_states = self._reshape(self.k_proj(hidden_states), -1, batch_size)
        value_states = self._reshape(self.v_proj(hidden_states_original), -1, batch_size)

        proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
        query_states = self._reshape(query_states, target_len, batch_size).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        source_len = key_states.size(1)

        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
            raise ValueError(
                f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
                f" {attn_weights.size()}"
            )

        # expand attention_mask
        if attention_mask is not None:
            # [seq_len, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
            attention_mask = attention_mask.expand(batch_size, 1, *attention_mask.size())

        if attention_mask is not None:
            if attention_mask.size() != (batch_size, 1, target_len, source_len):
                raise ValueError(
                    f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
                    f" {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
            attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
            attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(batch_size, target_len, embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped


class RTDetrDecoderLayer(nn.Module):
    def __init__(self, config: RTDetrConfig):
        super().__init__()
        # self-attention
        self.self_attn = RTDetrMultiheadAttention(
            embed_dim=config.d_model,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.decoder_activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
        # cross-attention
        self.encoder_attn = RTDetrMultiscaleDeformableAttention(
            config,
            num_heads=config.decoder_attention_heads,
            n_points=config.decoder_n_points,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
        # feedforward neural networks
        self.fc1 = nn.Linear(config.d_model, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, config.d_model)
        self.final_layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Optional[torch.Tensor] = None,
        reference_points=None,
        spatial_shapes=None,
        spatial_shapes_list=None,
        level_start_index=None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ):
        """
        Args:
            hidden_states (`torch.FloatTensor`):
                Input to the layer of shape `(seq_len, batch, embed_dim)`.
            position_embeddings (`torch.FloatTensor`, *optional*):
                Position embeddings that are added to the queries and keys in the self-attention layer.
            reference_points (`torch.FloatTensor`, *optional*):
                Reference points.
            spatial_shapes (`torch.LongTensor`, *optional*):
                Spatial shapes.
            level_start_index (`torch.LongTensor`, *optional*):
                Level start index.
            encoder_hidden_states (`torch.FloatTensor`):
                cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
                `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
                values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        # Self Attention
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=encoder_attention_mask,
            position_embeddings=position_embeddings,
            output_attentions=output_attentions,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        second_residual = hidden_states

        # Cross-Attention
        cross_attn_weights = None
        hidden_states, cross_attn_weights = self.encoder_attn(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            position_embeddings=position_embeddings,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            spatial_shapes_list=spatial_shapes_list,
            level_start_index=level_start_index,
            output_attentions=output_attentions,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = second_residual + hidden_states

        hidden_states = self.encoder_attn_layer_norm(hidden_states)

        # Fully Connected
        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        return outputs


class RTDetrPreTrainedModel(PreTrainedModel):
    config_class = RTDetrConfig
    base_model_prefix = "rt_detr"
    main_input_name = "pixel_values"
    _no_split_modules = [r"RTDetrConvEncoder", r"RTDetrEncoderLayer", r"RTDetrDecoderLayer"]

    def _init_weights(self, module):
        """Initalize the weights"""

        """initialize linear layer bias value according to a given probability value."""
        if isinstance(module, (RTDetrForObjectDetection, RTDetrDecoder)):
            if module.class_embed is not None:
                for layer in module.class_embed:
                    prior_prob = self.config.initializer_bias_prior_prob or 1 / (self.config.num_labels + 1)
                    bias = float(-math.log((1 - prior_prob) / prior_prob))
                    nn.init.xavier_uniform_(layer.weight)
                    nn.init.constant_(layer.bias, bias)

            if module.bbox_embed is not None:
                for layer in module.bbox_embed:
                    nn.init.constant_(layer.layers[-1].weight, 0)
                    nn.init.constant_(layer.layers[-1].bias, 0)

        if isinstance(module, RTDetrMultiscaleDeformableAttention):
            nn.init.constant_(module.sampling_offsets.weight.data, 0.0)
            default_dtype = torch.get_default_dtype()
            thetas = torch.arange(module.n_heads, dtype=torch.int64).to(default_dtype) * (
                2.0 * math.pi / module.n_heads
            )
            grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
            grid_init = (
                (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
                .view(module.n_heads, 1, 1, 2)
                .repeat(1, module.n_levels, module.n_points, 1)
            )
            for i in range(module.n_points):
                grid_init[:, :, i, :] *= i + 1
            with torch.no_grad():
                module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
            nn.init.constant_(module.attention_weights.weight.data, 0.0)
            nn.init.constant_(module.attention_weights.bias.data, 0.0)
            nn.init.xavier_uniform_(module.value_proj.weight.data)
            nn.init.constant_(module.value_proj.bias.data, 0.0)
            nn.init.xavier_uniform_(module.output_proj.weight.data)
            nn.init.constant_(module.output_proj.bias.data, 0.0)

        if isinstance(module, RTDetrModel):
            prior_prob = self.config.initializer_bias_prior_prob or 1 / (self.config.num_labels + 1)
            bias = float(-math.log((1 - prior_prob) / prior_prob))
            nn.init.xavier_uniform_(module.enc_score_head.weight)
            nn.init.constant_(module.enc_score_head.bias, bias)

        if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()

        if hasattr(module, "weight_embedding") and self.config.learn_initial_query:
            nn.init.xavier_uniform_(module.weight_embedding.weight)
        if hasattr(module, "denoising_class_embed") and self.config.num_denoising > 0:
            nn.init.xavier_uniform_(module.denoising_class_embed.weight)


RTDETR_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`RTDetrConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

RTDETR_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`RTDetrImageProcessor.__call__`] for details.
        pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
            Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:

            - 1 for pixels that are real (i.e. **not masked**),
            - 0 for pixels that are padding (i.e. **masked**).

            [What are attention masks?](../glossary#attention-mask)
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
            can choose to directly pass a flattened representation of an image.
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
            Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
            embedded representation.
        labels (`List[Dict]` of len `(batch_size,)`, *optional*):
            Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
            following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
            respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
            in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class RTDetrEncoder(nn.Module):
    def __init__(self, config: RTDetrConfig):
        super().__init__()

        self.layers = nn.ModuleList([RTDetrEncoderLayer(config) for _ in range(config.encoder_layers)])

    def forward(self, src, src_mask=None, pos_embed=None, output_attentions: bool = False) -> torch.Tensor:
        hidden_states = src
        for layer in self.layers:
            hidden_states = layer(
                hidden_states,
                attention_mask=src_mask,
                position_embeddings=pos_embed,
                output_attentions=output_attentions,
            )
        return hidden_states


class RTDetrHybridEncoder(nn.Module):
    """
    Decoder consisting of a projection layer, a set of `RTDetrEncoder`, a top-down Feature Pyramid Network
    (FPN) and a bottom-up Path Aggregation Network (PAN). More details on the paper: https://arxiv.org/abs/2304.08069

    Args:
        config: RTDetrConfig
    """

    def __init__(self, config: RTDetrConfig):
        super().__init__()
        self.config = config
        self.in_channels = config.encoder_in_channels
        self.feat_strides = config.feat_strides
        self.encoder_hidden_dim = config.encoder_hidden_dim
        self.encode_proj_layers = config.encode_proj_layers
        self.positional_encoding_temperature = config.positional_encoding_temperature
        self.eval_size = config.eval_size
        self.out_channels = [self.encoder_hidden_dim for _ in self.in_channels]
        self.out_strides = self.feat_strides
        activation_function = config.activation_function

        # encoder transformer
        self.encoder = nn.ModuleList([RTDetrEncoder(config) for _ in range(len(self.encode_proj_layers))])
        # top-down fpn
        self.lateral_convs = nn.ModuleList()
        self.fpn_blocks = nn.ModuleList()
        for _ in range(len(self.in_channels) - 1, 0, -1):
            self.lateral_convs.append(
                RTDetrConvNormLayer(
                    config, self.encoder_hidden_dim, self.encoder_hidden_dim, 1, 1, activation=activation_function
                )
            )
            self.fpn_blocks.append(RTDetrCSPRepLayer(config))

        # bottom-up pan
        self.downsample_convs = nn.ModuleList()
        self.pan_blocks = nn.ModuleList()
        for _ in range(len(self.in_channels) - 1):
            self.downsample_convs.append(
                RTDetrConvNormLayer(
                    config, self.encoder_hidden_dim, self.encoder_hidden_dim, 3, 2, activation=activation_function
                )
            )
            self.pan_blocks.append(RTDetrCSPRepLayer(config))

    @staticmethod
    def build_2d_sincos_position_embedding(
        width, height, embed_dim=256, temperature=10000.0, device="cpu", dtype=torch.float32
    ):
        grid_w = torch.arange(int(width), dtype=dtype, device=device)
        grid_h = torch.arange(int(height), dtype=dtype, device=device)
        grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
        if embed_dim % 4 != 0:
            raise ValueError("Embed dimension must be divisible by 4 for 2D sin-cos position embedding")
        pos_dim = embed_dim // 4
        omega = torch.arange(pos_dim, dtype=dtype, device=device) / pos_dim
        omega = 1.0 / (temperature**omega)

        out_w = grid_w.flatten()[..., None] @ omega[None]
        out_h = grid_h.flatten()[..., None] @ omega[None]

        return torch.concat([out_w.sin(), out_w.cos(), out_h.sin(), out_h.cos()], dim=1)[None, :, :]

    def forward(
        self,
        inputs_embeds=None,
        attention_mask=None,
        position_embeddings=None,
        spatial_shapes=None,
        level_start_index=None,
        valid_ratios=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
                - 1 for pixel features that are real (i.e. **not masked**),
                - 0 for pixel features that are padding (i.e. **masked**).
                [What are attention masks?](../glossary#attention-mask)
            position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Position embeddings that are added to the queries and keys in each self-attention layer.
            spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
                Spatial shapes of each feature map.
            level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
                Starting index of each feature map.
            valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
                Ratio of valid area in each feature level.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        hidden_states = inputs_embeds

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        # encoder
        if self.config.encoder_layers > 0:
            for i, enc_ind in enumerate(self.encode_proj_layers):
                if output_hidden_states:
                    encoder_states = encoder_states + (hidden_states[enc_ind],)
                height, width = hidden_states[enc_ind].shape[2:]
                # flatten [batch, channel, height, width] to [batch, height*width, channel]
                src_flatten = hidden_states[enc_ind].flatten(2).permute(0, 2, 1)
                if self.training or self.eval_size is None:
                    pos_embed = self.build_2d_sincos_position_embedding(
                        width,
                        height,
                        self.encoder_hidden_dim,
                        self.positional_encoding_temperature,
                        device=src_flatten.device,
                        dtype=src_flatten.dtype,
                    )
                else:
                    pos_embed = None

                layer_outputs = self.encoder[i](
                    src_flatten,
                    pos_embed=pos_embed,
                    output_attentions=output_attentions,
                )
                hidden_states[enc_ind] = (
                    layer_outputs[0].permute(0, 2, 1).reshape(-1, self.encoder_hidden_dim, height, width).contiguous()
                )

                if output_attentions:
                    all_attentions = all_attentions + (layer_outputs[1],)

            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states[enc_ind],)

        # broadcasting and fusion
        fpn_feature_maps = [hidden_states[-1]]
        for idx in range(len(self.in_channels) - 1, 0, -1):
            feat_high = fpn_feature_maps[0]
            feat_low = hidden_states[idx - 1]
            feat_high = self.lateral_convs[len(self.in_channels) - 1 - idx](feat_high)
            fpn_feature_maps[0] = feat_high
            upsample_feat = F.interpolate(feat_high, scale_factor=2.0, mode="nearest")
            fps_map = self.fpn_blocks[len(self.in_channels) - 1 - idx](torch.concat([upsample_feat, feat_low], dim=1))
            fpn_feature_maps.insert(0, fps_map)

        fpn_states = [fpn_feature_maps[0]]
        for idx in range(len(self.in_channels) - 1):
            feat_low = fpn_states[-1]
            feat_high = fpn_feature_maps[idx + 1]
            downsample_feat = self.downsample_convs[idx](feat_low)
            hidden_states = self.pan_blocks[idx](
                torch.concat([downsample_feat, feat_high.to(downsample_feat.device)], dim=1)
            )
            fpn_states.append(hidden_states)

        if not return_dict:
            return tuple(v for v in [fpn_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(last_hidden_state=fpn_states, hidden_states=encoder_states, attentions=all_attentions)


class RTDetrDecoder(RTDetrPreTrainedModel):
    def __init__(self, config: RTDetrConfig):
        super().__init__(config)

        self.dropout = config.dropout
        self.layers = nn.ModuleList([RTDetrDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.query_pos_head = RTDetrMLPPredictionHead(config, 4, 2 * config.d_model, config.d_model, num_layers=2)

        # hack implementation for iterative bounding box refinement and two-stage Deformable DETR
        self.bbox_embed = None
        self.class_embed = None

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        position_embeddings=None,
        reference_points=None,
        spatial_shapes=None,
        spatial_shapes_list=None,
        level_start_index=None,
        valid_ratios=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
                The query embeddings that are passed into the decoder.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
                in `[0, 1]`:
                - 1 for pixels that are real (i.e. **not masked**),
                - 0 for pixels that are padding (i.e. **masked**).
            position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
                Position embeddings that are added to the queries and keys in each self-attention layer.
            reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
                Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
            spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
                Spatial shapes of the feature maps.
            level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
                Indexes for the start of each feature level. In range `[0, sequence_length]`.
            valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
                Ratio of valid area in each feature level.

            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is not None:
            hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
        intermediate = ()
        intermediate_reference_points = ()
        intermediate_logits = ()

        reference_points = F.sigmoid(reference_points)

        # https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/rtdetr_decoder.py#L252
        for idx, decoder_layer in enumerate(self.layers):
            reference_points_input = reference_points.unsqueeze(2)
            position_embeddings = self.query_pos_head(reference_points)

            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = decoder_layer(
                hidden_states,
                position_embeddings=position_embeddings,
                encoder_hidden_states=encoder_hidden_states,
                reference_points=reference_points_input,
                spatial_shapes=spatial_shapes,
                spatial_shapes_list=spatial_shapes_list,
                level_start_index=level_start_index,
                encoder_attention_mask=encoder_attention_mask,
                output_attentions=output_attentions,
            )

            hidden_states = layer_outputs[0]

            # hack implementation for iterative bounding box refinement
            if self.bbox_embed is not None:
                tmp = self.bbox_embed[idx](hidden_states)
                new_reference_points = F.sigmoid(tmp + inverse_sigmoid(reference_points))
                reference_points = new_reference_points.detach()

            intermediate += (hidden_states,)
            intermediate_reference_points += (
                (new_reference_points,) if self.bbox_embed is not None else (reference_points,)
            )

            if self.class_embed is not None:
                logits = self.class_embed[idx](hidden_states)
                intermediate_logits += (logits,)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        # Keep batch_size as first dimension
        intermediate = torch.stack(intermediate, dim=1)
        intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
        if self.class_embed is not None:
            intermediate_logits = torch.stack(intermediate_logits, dim=1)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    intermediate,
                    intermediate_logits,
                    intermediate_reference_points,
                    all_hidden_states,
                    all_self_attns,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return RTDetrDecoderOutput(
            last_hidden_state=hidden_states,
            intermediate_hidden_states=intermediate,
            intermediate_logits=intermediate_logits,
            intermediate_reference_points=intermediate_reference_points,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


def compile_compatible_lru_cache(*lru_args, **lru_kwargs):
    def decorator(func):
        @wraps(func)
        def wrapper(self, *args, **kwargs):
            if not torch.compiler.is_compiling():
                # Cache the function only if the model is not being compiled
                # check if the function is already cached, otherwise create it
                if not hasattr(self, f"_cached_{func.__name__}"):
                    self.__setattr__(
                        f"_cached_{func.__name__}", lru_cache(*lru_args, **lru_kwargs)(func.__get__(self))
                    )
                return self.__getattribute__(f"_cached_{func.__name__}")(*args, **kwargs)
            else:
                # Otherwise, just call the original function
                return func(self, *args, **kwargs)

        return wrapper

    return decorator


# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
class RTDetrMLPPredictionHead(nn.Module):
    """
    Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
    height and width of a bounding box w.r.t. an image.

    Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
    Origin from https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_paddle/ppdet/modeling/transformers/utils.py#L453

    """

    def __init__(self, config, input_dim, d_model, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [d_model] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


@add_start_docstrings(
    """
    RT-DETR Model (consisting of a backbone and encoder-decoder) outputting raw hidden states without any head on top.
    """,
    RTDETR_START_DOCSTRING,
)
class RTDetrModel(RTDetrPreTrainedModel):
    def __init__(self, config: RTDetrConfig):
        super().__init__(config)

        # Create backbone
        self.backbone = RTDetrConvEncoder(config)
        intermediate_channel_sizes = self.backbone.intermediate_channel_sizes

        # Create encoder input projection layers
        # https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/hybrid_encoder.py#L212
        num_backbone_outs = len(intermediate_channel_sizes)
        encoder_input_proj_list = []
        for _ in range(num_backbone_outs):
            in_channels = intermediate_channel_sizes[_]
            encoder_input_proj_list.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, config.encoder_hidden_dim, kernel_size=1, bias=False),
                    nn.BatchNorm2d(config.encoder_hidden_dim),
                )
            )
        self.encoder_input_proj = nn.ModuleList(encoder_input_proj_list)

        # Create encoder
        self.encoder = RTDetrHybridEncoder(config)

        # denoising part
        if config.num_denoising > 0:
            self.denoising_class_embed = nn.Embedding(
                config.num_labels + 1, config.d_model, padding_idx=config.num_labels
            )

        # decoder embedding
        if config.learn_initial_query:
            self.weight_embedding = nn.Embedding(config.num_queries, config.d_model)

        # encoder head
        self.enc_output = nn.Sequential(
            nn.Linear(config.d_model, config.d_model),
            nn.LayerNorm(config.d_model, eps=config.layer_norm_eps),
        )
        self.enc_score_head = nn.Linear(config.d_model, config.num_labels)
        self.enc_bbox_head = RTDetrMLPPredictionHead(config, config.d_model, config.d_model, 4, num_layers=3)

        # init encoder output anchors and valid_mask
        if config.anchor_image_size:
            self.anchors, self.valid_mask = self.generate_anchors(dtype=self.dtype)

        # Create decoder input projection layers
        # https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/rtdetr_decoder.py#L412
        num_backbone_outs = len(config.decoder_in_channels)
        decoder_input_proj_list = []
        for _ in range(num_backbone_outs):
            in_channels = config.decoder_in_channels[_]
            decoder_input_proj_list.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, config.d_model, kernel_size=1, bias=False),
                    nn.BatchNorm2d(config.d_model, config.batch_norm_eps),
                )
            )
        for _ in range(config.num_feature_levels - num_backbone_outs):
            decoder_input_proj_list.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1, bias=False),
                    nn.BatchNorm2d(config.d_model, config.batch_norm_eps),
                )
            )
            in_channels = config.d_model
        self.decoder_input_proj = nn.ModuleList(decoder_input_proj_list)

        # decoder
        self.decoder = RTDetrDecoder(config)

        self.post_init()

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def freeze_backbone(self):
        for param in self.backbone.parameters():
            param.requires_grad_(False)

    def unfreeze_backbone(self):
        for param in self.backbone.parameters():
            param.requires_grad_(True)

    @compile_compatible_lru_cache(maxsize=32)
    def generate_anchors(self, spatial_shapes=None, grid_size=0.05, device="cpu", dtype=torch.float32):
        if spatial_shapes is None:
            spatial_shapes = [
                [int(self.config.anchor_image_size[0] / s), int(self.config.anchor_image_size[1] / s)]
                for s in self.config.feat_strides
            ]
        anchors = []
        for level, (height, width) in enumerate(spatial_shapes):
            grid_y, grid_x = torch.meshgrid(
                torch.arange(end=height, dtype=dtype, device=device),
                torch.arange(end=width, dtype=dtype, device=device),
                indexing="ij",
            )
            grid_xy = torch.stack([grid_x, grid_y], -1)
            valid_wh = torch.tensor([width, height], device=device).to(dtype)
            grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_wh
            wh = torch.ones_like(grid_xy) * grid_size * (2.0**level)
            anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, height * width, 4))
        # define the valid range for anchor coordinates
        eps = 1e-2
        anchors = torch.concat(anchors, 1)
        valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True)
        anchors = torch.log(anchors / (1 - anchors))
        anchors = torch.where(valid_mask, anchors, torch.tensor(torch.finfo(dtype).max, dtype=dtype, device=device))

        return anchors, valid_mask

    @add_start_docstrings_to_model_forward(RTDETR_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=RTDetrModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        pixel_mask: Optional[torch.LongTensor] = None,
        encoder_outputs: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[List[dict]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], RTDetrModelOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, RTDetrModel
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
        >>> model = RTDetrModel.from_pretrained("PekingU/rtdetr_r50vd")

        >>> inputs = image_processor(images=image, return_tensors="pt")

        >>> outputs = model(**inputs)

        >>> last_hidden_states = outputs.last_hidden_state
        >>> list(last_hidden_states.shape)
        [1, 300, 256]
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        batch_size, num_channels, height, width = pixel_values.shape
        device = pixel_values.device

        if pixel_mask is None:
            pixel_mask = torch.ones(((batch_size, height, width)), device=device)

        features = self.backbone(pixel_values, pixel_mask)

        proj_feats = [self.encoder_input_proj[level](source) for level, (source, mask) in enumerate(features)]

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                proj_feats,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if output_hidden_states else None,
                attentions=encoder_outputs[2]
                if len(encoder_outputs) > 2
                else encoder_outputs[1]
                if output_attentions
                else None,
            )

        # Equivalent to def _get_encoder_input
        # https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/rtdetr_decoder.py#L412
        sources = []
        for level, source in enumerate(encoder_outputs[0]):
            sources.append(self.decoder_input_proj[level](source))

        # Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
        if self.config.num_feature_levels > len(sources):
            _len_sources = len(sources)
            sources.append(self.decoder_input_proj[_len_sources](encoder_outputs[0])[-1])
            for i in range(_len_sources + 1, self.config.num_feature_levels):
                sources.append(self.decoder_input_proj[i](encoder_outputs[0][-1]))

        # Prepare encoder inputs (by flattening)
        source_flatten = []
        spatial_shapes_list = []
        for level, source in enumerate(sources):
            batch_size, num_channels, height, width = source.shape
            spatial_shape = (height, width)
            spatial_shapes_list.append(spatial_shape)
            source = source.flatten(2).transpose(1, 2)
            source_flatten.append(source)
        source_flatten = torch.cat(source_flatten, 1)
        spatial_shapes = torch.as_tensor(spatial_shapes_list, dtype=torch.long, device=source_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))

        # prepare denoising training
        if self.training and self.config.num_denoising > 0 and labels is not None:
            (
                denoising_class,
                denoising_bbox_unact,
                attention_mask,
                denoising_meta_values,
            ) = get_contrastive_denoising_training_group(
                targets=labels,
                num_classes=self.config.num_labels,
                num_queries=self.config.num_queries,
                class_embed=self.denoising_class_embed,
                num_denoising_queries=self.config.num_denoising,
                label_noise_ratio=self.config.label_noise_ratio,
                box_noise_scale=self.config.box_noise_scale,
            )
        else:
            denoising_class, denoising_bbox_unact, attention_mask, denoising_meta_values = None, None, None, None

        batch_size = len(source_flatten)
        device = source_flatten.device
        dtype = source_flatten.dtype

        # prepare input for decoder
        if self.training or self.config.anchor_image_size is None:
            # Pass spatial_shapes as tuple to make it hashable and make sure
            # lru_cache is working for generate_anchors()
            spatial_shapes_tuple = tuple(spatial_shapes_list)
            anchors, valid_mask = self.generate_anchors(spatial_shapes_tuple, device=device, dtype=dtype)
        else:
            anchors, valid_mask = self.anchors, self.valid_mask

        anchors, valid_mask = anchors.to(device, dtype), valid_mask.to(device, dtype)

        # use the valid_mask to selectively retain values in the feature map where the mask is `True`
        memory = valid_mask.to(source_flatten.dtype) * source_flatten

        output_memory = self.enc_output(memory)

        enc_outputs_class = self.enc_score_head(output_memory)
        enc_outputs_coord_logits = self.enc_bbox_head(output_memory) + anchors

        _, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.config.num_queries, dim=1)

        reference_points_unact = enc_outputs_coord_logits.gather(
            dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_logits.shape[-1])
        )

        enc_topk_bboxes = F.sigmoid(reference_points_unact)
        if denoising_bbox_unact is not None:
            reference_points_unact = torch.concat([denoising_bbox_unact, reference_points_unact], 1)

        enc_topk_logits = enc_outputs_class.gather(
            dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1])
        )

        # extract region features
        if self.config.learn_initial_query:
            target = self.weight_embedding.tile([batch_size, 1, 1])
        else:
            target = output_memory.gather(dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
            target = target.detach()

        if denoising_class is not None:
            target = torch.concat([denoising_class, target], 1)

        init_reference_points = reference_points_unact.detach()

        # decoder
        decoder_outputs = self.decoder(
            inputs_embeds=target,
            encoder_hidden_states=source_flatten,
            encoder_attention_mask=attention_mask,
            reference_points=init_reference_points,
            spatial_shapes=spatial_shapes,
            spatial_shapes_list=spatial_shapes_list,
            level_start_index=level_start_index,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            enc_outputs = tuple(
                value
                for value in [enc_topk_logits, enc_topk_bboxes, enc_outputs_class, enc_outputs_coord_logits]
                if value is not None
            )
            dn_outputs = tuple(value if value is not None else None for value in [denoising_meta_values])
            tuple_outputs = decoder_outputs + encoder_outputs + (init_reference_points,) + enc_outputs + dn_outputs

            return tuple_outputs

        return RTDetrModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
            intermediate_logits=decoder_outputs.intermediate_logits,
            intermediate_reference_points=decoder_outputs.intermediate_reference_points,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            init_reference_points=init_reference_points,
            enc_topk_logits=enc_topk_logits,
            enc_topk_bboxes=enc_topk_bboxes,
            enc_outputs_class=enc_outputs_class,
            enc_outputs_coord_logits=enc_outputs_coord_logits,
            denoising_meta_values=denoising_meta_values,
        )


@add_start_docstrings(
    """
    RT-DETR Model (consisting of a backbone and encoder-decoder) outputting bounding boxes and logits to be further
    decoded into scores and classes.
    """,
    RTDETR_START_DOCSTRING,
)
class RTDetrForObjectDetection(RTDetrPreTrainedModel):
    # When using clones, all layers > 0 will be clones, but layer 0 *is* required
    _tied_weights_keys = ["bbox_embed", "class_embed"]
    # We can't initialize the model on meta device as some weights are modified during the initialization
    _no_split_modules = None

    def __init__(self, config: RTDetrConfig):
        super().__init__(config)

        # RTDETR encoder-decoder model
        self.model = RTDetrModel(config)

        # Detection heads on top
        self.class_embed = partial(nn.Linear, config.d_model, config.num_labels)
        self.bbox_embed = partial(RTDetrMLPPredictionHead, config, config.d_model, config.d_model, 4, num_layers=3)

        # if two-stage, the last class_embed and bbox_embed is for region proposal generation
        num_pred = config.decoder_layers
        if config.with_box_refine:
            self.class_embed = _get_clones(self.class_embed, num_pred)
            self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
        else:
            self.class_embed = nn.ModuleList([self.class_embed() for _ in range(num_pred)])
            self.bbox_embed = nn.ModuleList([self.bbox_embed() for _ in range(num_pred)])

        # hack implementation for iterative bounding box refinement
        self.model.decoder.class_embed = self.class_embed
        self.model.decoder.bbox_embed = self.bbox_embed

        # Initialize weights and apply final processing
        self.post_init()

    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_coord):
        # this is a workaround to make torchscript happy, as torchscript
        # doesn't support dictionary with non-homogeneous values, such
        # as a dict having both a Tensor and a list.
        return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class, outputs_coord)]

    @add_start_docstrings_to_model_forward(RTDETR_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=RTDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        pixel_mask: Optional[torch.LongTensor] = None,
        encoder_outputs: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[List[dict]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **loss_kwargs,
    ) -> Union[Tuple[torch.FloatTensor], RTDetrObjectDetectionOutput]:
        r"""
        labels (`List[Dict]` of len `(batch_size,)`, *optional*):
            Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
            following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
            respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
            in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.

        Returns:

        Examples:

        ```python
        >>> from transformers import RTDetrImageProcessor, RTDetrForObjectDetection
        >>> from PIL import Image
        >>> import requests
        >>> import torch

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
        >>> model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")

        >>> # prepare image for the model
        >>> inputs = image_processor(images=image, return_tensors="pt")

        >>> # forward pass
        >>> outputs = model(**inputs)

        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 300, 80]

        >>> boxes = outputs.pred_boxes
        >>> list(boxes.shape)
        [1, 300, 4]

        >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
        >>> target_sizes = torch.tensor([image.size[::-1]])
        >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
        ...     0
        ... ]

        >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        ...     box = [round(i, 2) for i in box.tolist()]
        ...     print(
        ...         f"Detected {model.config.id2label[label.item()]} with confidence "
        ...         f"{round(score.item(), 3)} at location {box}"
        ...     )
        Detected sofa with confidence 0.97 at location [0.14, 0.38, 640.13, 476.21]
        Detected cat with confidence 0.96 at location [343.38, 24.28, 640.14, 371.5]
        Detected cat with confidence 0.958 at location [13.23, 54.18, 318.98, 472.22]
        Detected remote with confidence 0.951 at location [40.11, 73.44, 175.96, 118.48]
        Detected remote with confidence 0.924 at location [333.73, 76.58, 369.97, 186.99]
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            pixel_values,
            pixel_mask=pixel_mask,
            encoder_outputs=encoder_outputs,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            labels=labels,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        denoising_meta_values = (
            outputs.denoising_meta_values if return_dict else outputs[-1] if self.training else None
        )

        outputs_class = outputs.intermediate_logits if return_dict else outputs[2]
        outputs_coord = outputs.intermediate_reference_points if return_dict else outputs[3]

        logits = outputs_class[:, -1]
        pred_boxes = outputs_coord[:, -1]

        loss, loss_dict, auxiliary_outputs, enc_topk_logits, enc_topk_bboxes = None, None, None, None, None
        if labels is not None:
            if self.training and denoising_meta_values is not None:
                enc_topk_logits = outputs.enc_topk_logits if return_dict else outputs[-5]
                enc_topk_bboxes = outputs.enc_topk_bboxes if return_dict else outputs[-4]
            loss, loss_dict, auxiliary_outputs = self.loss_function(
                logits,
                labels,
                self.device,
                pred_boxes,
                self.config,
                outputs_class,
                outputs_coord,
                enc_topk_logits=enc_topk_logits,
                enc_topk_bboxes=enc_topk_bboxes,
                denoising_meta_values=denoising_meta_values,
                **loss_kwargs,
            )

        if not return_dict:
            if auxiliary_outputs is not None:
                output = (logits, pred_boxes) + (auxiliary_outputs,) + outputs
            else:
                output = (logits, pred_boxes) + outputs
            return ((loss, loss_dict) + output) if loss is not None else output

        return RTDetrObjectDetectionOutput(
            loss=loss,
            loss_dict=loss_dict,
            logits=logits,
            pred_boxes=pred_boxes,
            auxiliary_outputs=auxiliary_outputs,
            last_hidden_state=outputs.last_hidden_state,
            intermediate_hidden_states=outputs.intermediate_hidden_states,
            intermediate_logits=outputs.intermediate_logits,
            intermediate_reference_points=outputs.intermediate_reference_points,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            init_reference_points=outputs.init_reference_points,
            enc_topk_logits=outputs.enc_topk_logits,
            enc_topk_bboxes=outputs.enc_topk_bboxes,
            enc_outputs_class=outputs.enc_outputs_class,
            enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
            denoising_meta_values=outputs.denoising_meta_values,
        )