File size: 105,447 Bytes
e0fbbdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 |
# coding=utf-8
# Copyright 2024 Baidu Inc and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RT-DETR model."""
import math
import os
import warnings
from dataclasses import dataclass
from functools import lru_cache, partial, wraps
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from transformers.activations import ACT2CLS, ACT2FN
from transformers.image_transforms import center_to_corners_format, corners_to_center_format
from transformers.modeling_outputs import BaseModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_ninja_available,
is_torch_cuda_available,
logging,
replace_return_docstrings,
)
from transformers.utils.backbone_utils import load_backbone
from config import RTDetrConfig
logger = logging.get_logger(__name__)
MultiScaleDeformableAttention = None
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.load_cuda_kernels
def load_cuda_kernels():
from torch.utils.cpp_extension import load
global MultiScaleDeformableAttention
root = Path(__file__).resolve().parent.parent.parent / "kernels" / "deformable_detr"
src_files = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu", "ms_deform_attn_cpu.cpp"),
os.path.join("cuda", "ms_deform_attn_cuda.cu"),
]
]
MultiScaleDeformableAttention = load(
"MultiScaleDeformableAttention",
src_files,
with_cuda=True,
extra_include_paths=[str(root)],
extra_cflags=["-DWITH_CUDA=1"],
extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
],
)
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.MultiScaleDeformableAttentionFunction
class MultiScaleDeformableAttentionFunction(Function):
@staticmethod
def forward(
context,
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
im2col_step,
):
context.im2col_step = im2col_step
output = MultiScaleDeformableAttention.ms_deform_attn_forward(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
context.im2col_step,
)
context.save_for_backward(
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights
)
return output
@staticmethod
@once_differentiable
def backward(context, grad_output):
(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
) = context.saved_tensors
grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
grad_output,
context.im2col_step,
)
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "RTDetrConfig"
# TODO: Replace all occurrences of the checkpoint with the final one
_CHECKPOINT_FOR_DOC = "PekingU/rtdetr_r50vd"
@dataclass
class RTDetrDecoderOutput(ModelOutput):
"""
Base class for outputs of the RTDetrDecoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions, namely:
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
- a stacked tensor of intermediate reference points.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`):
Stacked intermediate logits (logits of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
last_hidden_state: torch.FloatTensor = None
intermediate_hidden_states: torch.FloatTensor = None
intermediate_logits: torch.FloatTensor = None
intermediate_reference_points: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class RTDetrModelOutput(ModelOutput):
"""
Base class for outputs of the RT-DETR encoder-decoder model.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`):
Stacked intermediate logits (logits of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
picked as region proposals in the encoder stage. Output of bounding box binary classification (i.e.
foreground and background).
enc_topk_bboxes (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`):
Logits of predicted bounding boxes coordinates in the encoder stage.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
foreground and background).
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the first stage.
denoising_meta_values (`dict`):
Extra dictionary for the denoising related values
"""
last_hidden_state: torch.FloatTensor = None
intermediate_hidden_states: torch.FloatTensor = None
intermediate_logits: torch.FloatTensor = None
intermediate_reference_points: torch.FloatTensor = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
init_reference_points: torch.FloatTensor = None
enc_topk_logits: Optional[torch.FloatTensor] = None
enc_topk_bboxes: Optional[torch.FloatTensor] = None
enc_outputs_class: Optional[torch.FloatTensor] = None
enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
denoising_meta_values: Optional[Dict] = None
@dataclass
class RTDetrObjectDetectionOutput(ModelOutput):
"""
Output type of [`RTDetrForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~RTDetrImageProcessor.post_process_object_detection`] to retrieve the
unnormalized (absolute) bounding boxes.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, config.num_labels)`):
Stacked intermediate logits (logits of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the encoder.
enc_topk_bboxes (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the encoder.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
foreground and background).
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the first stage.
denoising_meta_values (`dict`):
Extra dictionary for the denoising related values
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
pred_boxes: torch.FloatTensor = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: torch.FloatTensor = None
intermediate_hidden_states: torch.FloatTensor = None
intermediate_logits: torch.FloatTensor = None
intermediate_reference_points: torch.FloatTensor = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
init_reference_points: Optional[Tuple[torch.FloatTensor]] = None
enc_topk_logits: Optional[torch.FloatTensor] = None
enc_topk_bboxes: Optional[torch.FloatTensor] = None
enc_outputs_class: Optional[torch.FloatTensor] = None
enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
denoising_meta_values: Optional[Dict] = None
def _get_clones(partial_module, N):
return nn.ModuleList([partial_module() for i in range(N)])
# Copied from transformers.models.conditional_detr.modeling_conditional_detr.inverse_sigmoid
def inverse_sigmoid(x, eps=1e-5):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
# Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->RTDetr
class RTDetrFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it user-friendly
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
# Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->RTDetr
def replace_batch_norm(model):
r"""
Recursively replace all `torch.nn.BatchNorm2d` with `RTDetrFrozenBatchNorm2d`.
Args:
model (torch.nn.Module):
input model
"""
for name, module in model.named_children():
if isinstance(module, nn.BatchNorm2d):
new_module = RTDetrFrozenBatchNorm2d(module.num_features)
if not module.weight.device == torch.device("meta"):
new_module.weight.data.copy_(module.weight)
new_module.bias.data.copy_(module.bias)
new_module.running_mean.data.copy_(module.running_mean)
new_module.running_var.data.copy_(module.running_var)
model._modules[name] = new_module
if len(list(module.children())) > 0:
replace_batch_norm(module)
def get_contrastive_denoising_training_group(
targets,
num_classes,
num_queries,
class_embed,
num_denoising_queries=100,
label_noise_ratio=0.5,
box_noise_scale=1.0,
):
"""
Creates a contrastive denoising training group using ground-truth samples. It adds noise to labels and boxes.
Args:
targets (`List[dict]`):
The target objects, each containing 'class_labels' and 'boxes' for objects in an image.
num_classes (`int`):
Total number of classes in the dataset.
num_queries (`int`):
Number of query slots in the transformer.
class_embed (`callable`):
A function or a model layer to embed class labels.
num_denoising_queries (`int`, *optional*, defaults to 100):
Number of denoising queries.
label_noise_ratio (`float`, *optional*, defaults to 0.5):
Ratio of noise applied to labels.
box_noise_scale (`float`, *optional*, defaults to 1.0):
Scale of noise applied to bounding boxes.
Returns:
`tuple` comprising various elements:
- **input_query_class** (`torch.FloatTensor`) --
Class queries with applied label noise.
- **input_query_bbox** (`torch.FloatTensor`) --
Bounding box queries with applied box noise.
- **attn_mask** (`torch.FloatTensor`) --
Attention mask for separating denoising and reconstruction queries.
- **denoising_meta_values** (`dict`) --
Metadata including denoising positive indices, number of groups, and split sizes.
"""
if num_denoising_queries <= 0:
return None, None, None, None
num_ground_truths = [len(t["class_labels"]) for t in targets]
device = targets[0]["class_labels"].device
max_gt_num = max(num_ground_truths)
if max_gt_num == 0:
return None, None, None, None
num_groups_denoising_queries = num_denoising_queries // max_gt_num
num_groups_denoising_queries = 1 if num_groups_denoising_queries == 0 else num_groups_denoising_queries
# pad gt to max_num of a batch
batch_size = len(num_ground_truths)
input_query_class = torch.full([batch_size, max_gt_num], num_classes, dtype=torch.int32, device=device)
input_query_bbox = torch.zeros([batch_size, max_gt_num, 4], device=device)
pad_gt_mask = torch.zeros([batch_size, max_gt_num], dtype=torch.bool, device=device)
for i in range(batch_size):
num_gt = num_ground_truths[i]
if num_gt > 0:
input_query_class[i, :num_gt] = targets[i]["class_labels"]
input_query_bbox[i, :num_gt] = targets[i]["boxes"]
pad_gt_mask[i, :num_gt] = 1
# each group has positive and negative queries.
input_query_class = input_query_class.tile([1, 2 * num_groups_denoising_queries])
input_query_bbox = input_query_bbox.tile([1, 2 * num_groups_denoising_queries, 1])
pad_gt_mask = pad_gt_mask.tile([1, 2 * num_groups_denoising_queries])
# positive and negative mask
negative_gt_mask = torch.zeros([batch_size, max_gt_num * 2, 1], device=device)
negative_gt_mask[:, max_gt_num:] = 1
negative_gt_mask = negative_gt_mask.tile([1, num_groups_denoising_queries, 1])
positive_gt_mask = 1 - negative_gt_mask
# contrastive denoising training positive index
positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
denoise_positive_idx = torch.nonzero(positive_gt_mask)[:, 1]
denoise_positive_idx = torch.split(
denoise_positive_idx, [n * num_groups_denoising_queries for n in num_ground_truths]
)
# total denoising queries
num_denoising_queries = int(max_gt_num * 2 * num_groups_denoising_queries)
if label_noise_ratio > 0:
mask = torch.rand_like(input_query_class, dtype=torch.float) < (label_noise_ratio * 0.5)
# randomly put a new one here
new_label = torch.randint_like(mask, 0, num_classes, dtype=input_query_class.dtype)
input_query_class = torch.where(mask & pad_gt_mask, new_label, input_query_class)
if box_noise_scale > 0:
known_bbox = center_to_corners_format(input_query_bbox)
diff = torch.tile(input_query_bbox[..., 2:] * 0.5, [1, 1, 2]) * box_noise_scale
rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
rand_part = torch.rand_like(input_query_bbox)
rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (1 - negative_gt_mask)
rand_part *= rand_sign
known_bbox += rand_part * diff
known_bbox.clip_(min=0.0, max=1.0)
input_query_bbox = corners_to_center_format(known_bbox)
input_query_bbox = inverse_sigmoid(input_query_bbox)
input_query_class = class_embed(input_query_class)
target_size = num_denoising_queries + num_queries
attn_mask = torch.full([target_size, target_size], False, dtype=torch.bool, device=device)
# match query cannot see the reconstruction
attn_mask[num_denoising_queries:, :num_denoising_queries] = True
# reconstructions cannot see each other
for i in range(num_groups_denoising_queries):
idx_block_start = max_gt_num * 2 * i
idx_block_end = max_gt_num * 2 * (i + 1)
attn_mask[idx_block_start:idx_block_end, :idx_block_start] = True
attn_mask[idx_block_start:idx_block_end, idx_block_end:num_denoising_queries] = True
denoising_meta_values = {
"dn_positive_idx": denoise_positive_idx,
"dn_num_group": num_groups_denoising_queries,
"dn_num_split": [num_denoising_queries, num_queries],
}
return input_query_class, input_query_bbox, attn_mask, denoising_meta_values
class RTDetrConvEncoder(nn.Module):
"""
Convolutional backbone using the modeling_rt_detr_resnet.py.
nn.BatchNorm2d layers are replaced by RTDetrFrozenBatchNorm2d as defined above.
https://github.com/lyuwenyu/RT-DETR/blob/main/rtdetr_pytorch/src/nn/backbone/presnet.py#L142
"""
def __init__(self, config):
super().__init__()
backbone = load_backbone(config)
if config.freeze_backbone_batch_norms:
# replace batch norm by frozen batch norm
with torch.no_grad():
replace_batch_norm(backbone)
self.model = backbone
self.intermediate_channel_sizes = self.model.channels
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
# send pixel_values through the model to get list of feature maps
features = self.model(pixel_values).feature_maps
out = []
for feature_map in features:
# downsample pixel_mask to match shape of corresponding feature_map
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
out.append((feature_map, mask))
return out
class RTDetrConvNormLayer(nn.Module):
def __init__(self, config, in_channels, out_channels, kernel_size, stride, padding=None, activation=None):
super().__init__()
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding=(kernel_size - 1) // 2 if padding is None else padding,
bias=False,
)
self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
def forward(self, hidden_state):
hidden_state = self.conv(hidden_state)
hidden_state = self.norm(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
class RTDetrEncoderLayer(nn.Module):
def __init__(self, config: RTDetrConfig):
super().__init__()
self.normalize_before = config.normalize_before
# self-attention
self.self_attn = RTDetrMultiheadAttention(
embed_dim=config.encoder_hidden_dim,
num_heads=config.num_attention_heads,
dropout=config.dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.encoder_activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(config.encoder_hidden_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, config.encoder_hidden_dim)
self.final_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor = None,
output_attentions: bool = False,
**kwargs,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
position_embeddings (`torch.FloatTensor`, *optional*):
Object queries (also called content embeddings), to be added to the hidden states.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
if self.normalize_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_embeddings=position_embeddings,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if not self.normalize_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
if self.normalize_before:
hidden_states = self.final_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if not self.normalize_before:
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class RTDetrRepVggBlock(nn.Module):
"""
RepVGG architecture block introduced by the work "RepVGG: Making VGG-style ConvNets Great Again".
"""
def __init__(self, config: RTDetrConfig):
super().__init__()
activation = config.activation_function
hidden_channels = int(config.encoder_hidden_dim * config.hidden_expansion)
self.conv1 = RTDetrConvNormLayer(config, hidden_channels, hidden_channels, 3, 1, padding=1)
self.conv2 = RTDetrConvNormLayer(config, hidden_channels, hidden_channels, 1, 1, padding=0)
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
def forward(self, x):
y = self.conv1(x) + self.conv2(x)
return self.activation(y)
class RTDetrCSPRepLayer(nn.Module):
"""
Cross Stage Partial (CSP) network layer with RepVGG blocks.
"""
def __init__(self, config: RTDetrConfig):
super().__init__()
in_channels = config.encoder_hidden_dim * 2
out_channels = config.encoder_hidden_dim
num_blocks = 3
activation = config.activation_function
hidden_channels = int(out_channels * config.hidden_expansion)
self.conv1 = RTDetrConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
self.conv2 = RTDetrConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
self.bottlenecks = nn.Sequential(*[RTDetrRepVggBlock(config) for _ in range(num_blocks)])
if hidden_channels != out_channels:
self.conv3 = RTDetrConvNormLayer(config, hidden_channels, out_channels, 1, 1, activation=activation)
else:
self.conv3 = nn.Identity()
def forward(self, hidden_state):
device = hidden_state.device
hidden_state_1 = self.conv1(hidden_state)
hidden_state_1 = self.bottlenecks(hidden_state_1).to(device)
hidden_state_2 = self.conv2(hidden_state).to(device)
return self.conv3(hidden_state_1 + hidden_state_2)
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention
def multi_scale_deformable_attention(
value: Tensor,
value_spatial_shapes: Union[Tensor, List[Tuple]],
sampling_locations: Tensor,
attention_weights: Tensor,
) -> Tensor:
batch_size, _, num_heads, hidden_dim = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([height * width for height, width in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level_id, (height, width) in enumerate(value_spatial_shapes):
# batch_size, height*width, num_heads, hidden_dim
# -> batch_size, height*width, num_heads*hidden_dim
# -> batch_size, num_heads*hidden_dim, height*width
# -> batch_size*num_heads, hidden_dim, height, width
value_l_ = (
value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
)
# batch_size, num_queries, num_heads, num_points, 2
# -> batch_size, num_heads, num_queries, num_points, 2
# -> batch_size*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
# batch_size*num_heads, hidden_dim, num_queries, num_points
sampling_value_l_ = nn.functional.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (batch_size, num_queries, num_heads, num_levels, num_points)
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
batch_size * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(batch_size, num_heads * hidden_dim, num_queries)
)
return output.transpose(1, 2).contiguous()
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->RTDetr
class RTDetrMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, config: RTDetrConfig, num_heads: int, n_points: int):
super().__init__()
kernel_loaded = MultiScaleDeformableAttention is not None
if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
try:
load_cuda_kernels()
except Exception as e:
logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
if config.d_model % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
)
dim_per_head = config.d_model // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in RTDetrMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 64
self.d_model = config.d_model
self.n_levels = config.num_feature_levels
self.n_heads = num_heads
self.n_points = n_points
# now n_points can be a list
if isinstance(n_points, list):
assert len(n_points) == self.n_levels, ''
n_points_list = n_points
else:
n_points_list = [n_points for _ in range(self.n_levels)]
self.n_points_list = n_points
num_points_scale = [1/n for n in n_points for _ in range(n)]
self.register_buffer('num_points_scale', torch.tensor(num_points_scale, dtype=torch.float32))
self.total_points = num_heads * sum(n_points_list)
## stop
self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
self.value_proj = nn.Linear(config.d_model, config.d_model)
self.output_proj = nn.Linear(config.d_model, config.d_model)
self.disable_custom_kernels = config.disable_custom_kernels
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
spatial_shapes_list=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
total_elements = sum(height * width for height, width in spatial_shapes_list)
if total_elements != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(~attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = F.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
num_coordinates = reference_points.shape[-1]
if num_coordinates == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif num_coordinates == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
num_points_scale = self.num_points_scale.to(dtype=hidden_states.dtype).unsqueeze(-1)
offset = sampling_offsets * num_points_scale * reference_points[:, :, None, :, 2:] * self.offset_scale
sampling_locations = reference_points[:, :, None, :, :2] + offset
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
if self.disable_custom_kernels or MultiScaleDeformableAttention is None:
# PyTorch implementation
output = multi_scale_deformable_attention(
value, spatial_shapes_list, sampling_locations, attention_weights
)
else:
try:
# custom kernel
output = MultiScaleDeformableAttentionFunction.apply(
value,
spatial_shapes,
level_start_index,
sampling_locations,
attention_weights,
self.im2col_step,
)
except Exception:
# PyTorch implementation
output = multi_scale_deformable_attention(
value, spatial_shapes_list, sampling_locations, attention_weights
)
output = self.output_proj(output)
return output, attention_weights
class RTDetrMultiheadAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper.
Here, we add position embeddings to the queries and keys (as explained in the Deformable DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _reshape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
# get queries, keys and values
query_states = self.q_proj(hidden_states) * self.scaling
key_states = self._reshape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._reshape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._reshape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
# expand attention_mask
if attention_mask is not None:
# [seq_len, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
attention_mask = attention_mask.expand(batch_size, 1, *attention_mask.size())
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
class RTDetrDecoderLayer(nn.Module):
def __init__(self, config: RTDetrConfig):
super().__init__()
# self-attention
self.self_attn = RTDetrMultiheadAttention(
embed_dim=config.d_model,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.decoder_activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
# cross-attention
self.encoder_attn = RTDetrMultiscaleDeformableAttention(
config,
num_heads=config.decoder_attention_heads,
n_points=config.decoder_n_points,
)
self.encoder_attn_layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
# feedforward neural networks
self.fc1 = nn.Linear(config.d_model, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, config.d_model)
self.final_layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
spatial_shapes_list=None,
level_start_index=None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(seq_len, batch, embed_dim)`.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings that are added to the queries and keys in the self-attention layer.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=encoder_attention_mask,
position_embeddings=position_embeddings,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
second_residual = hidden_states
# Cross-Attention
cross_attn_weights = None
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
spatial_shapes_list=spatial_shapes_list,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = second_residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class RTDetrPreTrainedModel(PreTrainedModel):
config_class = RTDetrConfig
base_model_prefix = "rt_detr"
main_input_name = "pixel_values"
_no_split_modules = [r"RTDetrConvEncoder", r"RTDetrEncoderLayer", r"RTDetrDecoderLayer"]
def _init_weights(self, module):
"""Initalize the weights"""
"""initialize linear layer bias value according to a given probability value."""
if isinstance(module, (RTDetrForObjectDetection, RTDetrDecoder)):
if module.class_embed is not None:
for layer in module.class_embed:
prior_prob = self.config.initializer_bias_prior_prob or 1 / (self.config.num_labels + 1)
bias = float(-math.log((1 - prior_prob) / prior_prob))
nn.init.xavier_uniform_(layer.weight)
nn.init.constant_(layer.bias, bias)
if module.bbox_embed is not None:
for layer in module.bbox_embed:
nn.init.constant_(layer.layers[-1].weight, 0)
nn.init.constant_(layer.layers[-1].bias, 0)
if isinstance(module, RTDetrMultiscaleDeformableAttention):
nn.init.constant_(module.sampling_offsets.weight.data, 0.0)
default_dtype = torch.get_default_dtype()
thetas = torch.arange(module.n_heads, dtype=torch.int64).to(default_dtype) * (
2.0 * math.pi / module.n_heads
)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(module.n_heads, 1, 1, 2)
.repeat(1, module.n_levels, module.n_points, 1)
)
for i in range(module.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
nn.init.constant_(module.attention_weights.weight.data, 0.0)
nn.init.constant_(module.attention_weights.bias.data, 0.0)
nn.init.xavier_uniform_(module.value_proj.weight.data)
nn.init.constant_(module.value_proj.bias.data, 0.0)
nn.init.xavier_uniform_(module.output_proj.weight.data)
nn.init.constant_(module.output_proj.bias.data, 0.0)
if isinstance(module, RTDetrModel):
prior_prob = self.config.initializer_bias_prior_prob or 1 / (self.config.num_labels + 1)
bias = float(-math.log((1 - prior_prob) / prior_prob))
nn.init.xavier_uniform_(module.enc_score_head.weight)
nn.init.constant_(module.enc_score_head.bias, bias)
if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
if hasattr(module, "weight_embedding") and self.config.learn_initial_query:
nn.init.xavier_uniform_(module.weight_embedding.weight)
if hasattr(module, "denoising_class_embed") and self.config.num_denoising > 0:
nn.init.xavier_uniform_(module.denoising_class_embed.weight)
RTDETR_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`RTDetrConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
RTDETR_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`RTDetrImageProcessor.__call__`] for details.
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
can choose to directly pass a flattened representation of an image.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
embedded representation.
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class RTDetrEncoder(nn.Module):
def __init__(self, config: RTDetrConfig):
super().__init__()
self.layers = nn.ModuleList([RTDetrEncoderLayer(config) for _ in range(config.encoder_layers)])
def forward(self, src, src_mask=None, pos_embed=None, output_attentions: bool = False) -> torch.Tensor:
hidden_states = src
for layer in self.layers:
hidden_states = layer(
hidden_states,
attention_mask=src_mask,
position_embeddings=pos_embed,
output_attentions=output_attentions,
)
return hidden_states
class RTDetrHybridEncoder(nn.Module):
"""
Decoder consisting of a projection layer, a set of `RTDetrEncoder`, a top-down Feature Pyramid Network
(FPN) and a bottom-up Path Aggregation Network (PAN). More details on the paper: https://arxiv.org/abs/2304.08069
Args:
config: RTDetrConfig
"""
def __init__(self, config: RTDetrConfig):
super().__init__()
self.config = config
self.in_channels = config.encoder_in_channels
self.feat_strides = config.feat_strides
self.encoder_hidden_dim = config.encoder_hidden_dim
self.encode_proj_layers = config.encode_proj_layers
self.positional_encoding_temperature = config.positional_encoding_temperature
self.eval_size = config.eval_size
self.out_channels = [self.encoder_hidden_dim for _ in self.in_channels]
self.out_strides = self.feat_strides
activation_function = config.activation_function
# encoder transformer
self.encoder = nn.ModuleList([RTDetrEncoder(config) for _ in range(len(self.encode_proj_layers))])
# top-down fpn
self.lateral_convs = nn.ModuleList()
self.fpn_blocks = nn.ModuleList()
for _ in range(len(self.in_channels) - 1, 0, -1):
self.lateral_convs.append(
RTDetrConvNormLayer(
config, self.encoder_hidden_dim, self.encoder_hidden_dim, 1, 1, activation=activation_function
)
)
self.fpn_blocks.append(RTDetrCSPRepLayer(config))
# bottom-up pan
self.downsample_convs = nn.ModuleList()
self.pan_blocks = nn.ModuleList()
for _ in range(len(self.in_channels) - 1):
self.downsample_convs.append(
RTDetrConvNormLayer(
config, self.encoder_hidden_dim, self.encoder_hidden_dim, 3, 2, activation=activation_function
)
)
self.pan_blocks.append(RTDetrCSPRepLayer(config))
@staticmethod
def build_2d_sincos_position_embedding(
width, height, embed_dim=256, temperature=10000.0, device="cpu", dtype=torch.float32
):
grid_w = torch.arange(int(width), dtype=dtype, device=device)
grid_h = torch.arange(int(height), dtype=dtype, device=device)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
if embed_dim % 4 != 0:
raise ValueError("Embed dimension must be divisible by 4 for 2D sin-cos position embedding")
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=dtype, device=device) / pos_dim
omega = 1.0 / (temperature**omega)
out_w = grid_w.flatten()[..., None] @ omega[None]
out_h = grid_h.flatten()[..., None] @ omega[None]
return torch.concat([out_w.sin(), out_w.cos(), out_h.sin(), out_h.cos()], dim=1)[None, :, :]
def forward(
self,
inputs_embeds=None,
attention_mask=None,
position_embeddings=None,
spatial_shapes=None,
level_start_index=None,
valid_ratios=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
Starting index of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Ratio of valid area in each feature level.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# encoder
if self.config.encoder_layers > 0:
for i, enc_ind in enumerate(self.encode_proj_layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states[enc_ind],)
height, width = hidden_states[enc_ind].shape[2:]
# flatten [batch, channel, height, width] to [batch, height*width, channel]
src_flatten = hidden_states[enc_ind].flatten(2).permute(0, 2, 1)
if self.training or self.eval_size is None:
pos_embed = self.build_2d_sincos_position_embedding(
width,
height,
self.encoder_hidden_dim,
self.positional_encoding_temperature,
device=src_flatten.device,
dtype=src_flatten.dtype,
)
else:
pos_embed = None
layer_outputs = self.encoder[i](
src_flatten,
pos_embed=pos_embed,
output_attentions=output_attentions,
)
hidden_states[enc_ind] = (
layer_outputs[0].permute(0, 2, 1).reshape(-1, self.encoder_hidden_dim, height, width).contiguous()
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states[enc_ind],)
# broadcasting and fusion
fpn_feature_maps = [hidden_states[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_high = fpn_feature_maps[0]
feat_low = hidden_states[idx - 1]
feat_high = self.lateral_convs[len(self.in_channels) - 1 - idx](feat_high)
fpn_feature_maps[0] = feat_high
upsample_feat = F.interpolate(feat_high, scale_factor=2.0, mode="nearest")
fps_map = self.fpn_blocks[len(self.in_channels) - 1 - idx](torch.concat([upsample_feat, feat_low], dim=1))
fpn_feature_maps.insert(0, fps_map)
fpn_states = [fpn_feature_maps[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = fpn_states[-1]
feat_high = fpn_feature_maps[idx + 1]
downsample_feat = self.downsample_convs[idx](feat_low)
hidden_states = self.pan_blocks[idx](
torch.concat([downsample_feat, feat_high.to(downsample_feat.device)], dim=1)
)
fpn_states.append(hidden_states)
if not return_dict:
return tuple(v for v in [fpn_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=fpn_states, hidden_states=encoder_states, attentions=all_attentions)
class RTDetrDecoder(RTDetrPreTrainedModel):
def __init__(self, config: RTDetrConfig):
super().__init__(config)
self.dropout = config.dropout
self.layers = nn.ModuleList([RTDetrDecoderLayer(config) for _ in range(config.decoder_layers)])
self.query_pos_head = RTDetrMLPPredictionHead(config, 4, 2 * config.d_model, config.d_model, num_layers=2)
# hack implementation for iterative bounding box refinement and two-stage Deformable DETR
self.bbox_embed = None
self.class_embed = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings=None,
reference_points=None,
spatial_shapes=None,
spatial_shapes_list=None,
level_start_index=None,
valid_ratios=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
The query embeddings that are passed into the decoder.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Position embeddings that are added to the queries and keys in each self-attention layer.
reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of the feature maps.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
Indexes for the start of each feature level. In range `[0, sequence_length]`.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
Ratio of valid area in each feature level.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
intermediate = ()
intermediate_reference_points = ()
intermediate_logits = ()
reference_points = F.sigmoid(reference_points)
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/rtdetr_decoder.py#L252
for idx, decoder_layer in enumerate(self.layers):
reference_points_input = reference_points.unsqueeze(2)
position_embeddings = self.query_pos_head(reference_points)
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
encoder_hidden_states=encoder_hidden_states,
reference_points=reference_points_input,
spatial_shapes=spatial_shapes,
spatial_shapes_list=spatial_shapes_list,
level_start_index=level_start_index,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
# hack implementation for iterative bounding box refinement
if self.bbox_embed is not None:
tmp = self.bbox_embed[idx](hidden_states)
new_reference_points = F.sigmoid(tmp + inverse_sigmoid(reference_points))
reference_points = new_reference_points.detach()
intermediate += (hidden_states,)
intermediate_reference_points += (
(new_reference_points,) if self.bbox_embed is not None else (reference_points,)
)
if self.class_embed is not None:
logits = self.class_embed[idx](hidden_states)
intermediate_logits += (logits,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# Keep batch_size as first dimension
intermediate = torch.stack(intermediate, dim=1)
intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
if self.class_embed is not None:
intermediate_logits = torch.stack(intermediate_logits, dim=1)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
intermediate,
intermediate_logits,
intermediate_reference_points,
all_hidden_states,
all_self_attns,
all_cross_attentions,
]
if v is not None
)
return RTDetrDecoderOutput(
last_hidden_state=hidden_states,
intermediate_hidden_states=intermediate,
intermediate_logits=intermediate_logits,
intermediate_reference_points=intermediate_reference_points,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
def compile_compatible_lru_cache(*lru_args, **lru_kwargs):
def decorator(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
if not torch.compiler.is_compiling():
# Cache the function only if the model is not being compiled
# check if the function is already cached, otherwise create it
if not hasattr(self, f"_cached_{func.__name__}"):
self.__setattr__(
f"_cached_{func.__name__}", lru_cache(*lru_args, **lru_kwargs)(func.__get__(self))
)
return self.__getattribute__(f"_cached_{func.__name__}")(*args, **kwargs)
else:
# Otherwise, just call the original function
return func(self, *args, **kwargs)
return wrapper
return decorator
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
class RTDetrMLPPredictionHead(nn.Module):
"""
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
height and width of a bounding box w.r.t. an image.
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
Origin from https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_paddle/ppdet/modeling/transformers/utils.py#L453
"""
def __init__(self, config, input_dim, d_model, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [d_model] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
@add_start_docstrings(
"""
RT-DETR Model (consisting of a backbone and encoder-decoder) outputting raw hidden states without any head on top.
""",
RTDETR_START_DOCSTRING,
)
class RTDetrModel(RTDetrPreTrainedModel):
def __init__(self, config: RTDetrConfig):
super().__init__(config)
# Create backbone
self.backbone = RTDetrConvEncoder(config)
intermediate_channel_sizes = self.backbone.intermediate_channel_sizes
# Create encoder input projection layers
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/hybrid_encoder.py#L212
num_backbone_outs = len(intermediate_channel_sizes)
encoder_input_proj_list = []
for _ in range(num_backbone_outs):
in_channels = intermediate_channel_sizes[_]
encoder_input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.encoder_hidden_dim, kernel_size=1, bias=False),
nn.BatchNorm2d(config.encoder_hidden_dim),
)
)
self.encoder_input_proj = nn.ModuleList(encoder_input_proj_list)
# Create encoder
self.encoder = RTDetrHybridEncoder(config)
# denoising part
if config.num_denoising > 0:
self.denoising_class_embed = nn.Embedding(
config.num_labels + 1, config.d_model, padding_idx=config.num_labels
)
# decoder embedding
if config.learn_initial_query:
self.weight_embedding = nn.Embedding(config.num_queries, config.d_model)
# encoder head
self.enc_output = nn.Sequential(
nn.Linear(config.d_model, config.d_model),
nn.LayerNorm(config.d_model, eps=config.layer_norm_eps),
)
self.enc_score_head = nn.Linear(config.d_model, config.num_labels)
self.enc_bbox_head = RTDetrMLPPredictionHead(config, config.d_model, config.d_model, 4, num_layers=3)
# init encoder output anchors and valid_mask
if config.anchor_image_size:
self.anchors, self.valid_mask = self.generate_anchors(dtype=self.dtype)
# Create decoder input projection layers
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/rtdetr_decoder.py#L412
num_backbone_outs = len(config.decoder_in_channels)
decoder_input_proj_list = []
for _ in range(num_backbone_outs):
in_channels = config.decoder_in_channels[_]
decoder_input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.d_model, kernel_size=1, bias=False),
nn.BatchNorm2d(config.d_model, config.batch_norm_eps),
)
)
for _ in range(config.num_feature_levels - num_backbone_outs):
decoder_input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(config.d_model, config.batch_norm_eps),
)
)
in_channels = config.d_model
self.decoder_input_proj = nn.ModuleList(decoder_input_proj_list)
# decoder
self.decoder = RTDetrDecoder(config)
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_backbone(self):
for param in self.backbone.parameters():
param.requires_grad_(False)
def unfreeze_backbone(self):
for param in self.backbone.parameters():
param.requires_grad_(True)
@compile_compatible_lru_cache(maxsize=32)
def generate_anchors(self, spatial_shapes=None, grid_size=0.05, device="cpu", dtype=torch.float32):
if spatial_shapes is None:
spatial_shapes = [
[int(self.config.anchor_image_size[0] / s), int(self.config.anchor_image_size[1] / s)]
for s in self.config.feat_strides
]
anchors = []
for level, (height, width) in enumerate(spatial_shapes):
grid_y, grid_x = torch.meshgrid(
torch.arange(end=height, dtype=dtype, device=device),
torch.arange(end=width, dtype=dtype, device=device),
indexing="ij",
)
grid_xy = torch.stack([grid_x, grid_y], -1)
valid_wh = torch.tensor([width, height], device=device).to(dtype)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_wh
wh = torch.ones_like(grid_xy) * grid_size * (2.0**level)
anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, height * width, 4))
# define the valid range for anchor coordinates
eps = 1e-2
anchors = torch.concat(anchors, 1)
valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True)
anchors = torch.log(anchors / (1 - anchors))
anchors = torch.where(valid_mask, anchors, torch.tensor(torch.finfo(dtype).max, dtype=dtype, device=device))
return anchors, valid_mask
@add_start_docstrings_to_model_forward(RTDETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=RTDetrModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], RTDetrModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, RTDetrModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
>>> model = RTDetrModel.from_pretrained("PekingU/rtdetr_r50vd")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 300, 256]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
features = self.backbone(pixel_values, pixel_mask)
proj_feats = [self.encoder_input_proj[level](source) for level, (source, mask) in enumerate(features)]
if encoder_outputs is None:
encoder_outputs = self.encoder(
proj_feats,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if output_hidden_states else None,
attentions=encoder_outputs[2]
if len(encoder_outputs) > 2
else encoder_outputs[1]
if output_attentions
else None,
)
# Equivalent to def _get_encoder_input
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/rtdetr_decoder.py#L412
sources = []
for level, source in enumerate(encoder_outputs[0]):
sources.append(self.decoder_input_proj[level](source))
# Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
if self.config.num_feature_levels > len(sources):
_len_sources = len(sources)
sources.append(self.decoder_input_proj[_len_sources](encoder_outputs[0])[-1])
for i in range(_len_sources + 1, self.config.num_feature_levels):
sources.append(self.decoder_input_proj[i](encoder_outputs[0][-1]))
# Prepare encoder inputs (by flattening)
source_flatten = []
spatial_shapes_list = []
for level, source in enumerate(sources):
batch_size, num_channels, height, width = source.shape
spatial_shape = (height, width)
spatial_shapes_list.append(spatial_shape)
source = source.flatten(2).transpose(1, 2)
source_flatten.append(source)
source_flatten = torch.cat(source_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes_list, dtype=torch.long, device=source_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
# prepare denoising training
if self.training and self.config.num_denoising > 0 and labels is not None:
(
denoising_class,
denoising_bbox_unact,
attention_mask,
denoising_meta_values,
) = get_contrastive_denoising_training_group(
targets=labels,
num_classes=self.config.num_labels,
num_queries=self.config.num_queries,
class_embed=self.denoising_class_embed,
num_denoising_queries=self.config.num_denoising,
label_noise_ratio=self.config.label_noise_ratio,
box_noise_scale=self.config.box_noise_scale,
)
else:
denoising_class, denoising_bbox_unact, attention_mask, denoising_meta_values = None, None, None, None
batch_size = len(source_flatten)
device = source_flatten.device
dtype = source_flatten.dtype
# prepare input for decoder
if self.training or self.config.anchor_image_size is None:
# Pass spatial_shapes as tuple to make it hashable and make sure
# lru_cache is working for generate_anchors()
spatial_shapes_tuple = tuple(spatial_shapes_list)
anchors, valid_mask = self.generate_anchors(spatial_shapes_tuple, device=device, dtype=dtype)
else:
anchors, valid_mask = self.anchors, self.valid_mask
anchors, valid_mask = anchors.to(device, dtype), valid_mask.to(device, dtype)
# use the valid_mask to selectively retain values in the feature map where the mask is `True`
memory = valid_mask.to(source_flatten.dtype) * source_flatten
output_memory = self.enc_output(memory)
enc_outputs_class = self.enc_score_head(output_memory)
enc_outputs_coord_logits = self.enc_bbox_head(output_memory) + anchors
_, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.config.num_queries, dim=1)
reference_points_unact = enc_outputs_coord_logits.gather(
dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_logits.shape[-1])
)
enc_topk_bboxes = F.sigmoid(reference_points_unact)
if denoising_bbox_unact is not None:
reference_points_unact = torch.concat([denoising_bbox_unact, reference_points_unact], 1)
enc_topk_logits = enc_outputs_class.gather(
dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1])
)
# extract region features
if self.config.learn_initial_query:
target = self.weight_embedding.tile([batch_size, 1, 1])
else:
target = output_memory.gather(dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
target = target.detach()
if denoising_class is not None:
target = torch.concat([denoising_class, target], 1)
init_reference_points = reference_points_unact.detach()
# decoder
decoder_outputs = self.decoder(
inputs_embeds=target,
encoder_hidden_states=source_flatten,
encoder_attention_mask=attention_mask,
reference_points=init_reference_points,
spatial_shapes=spatial_shapes,
spatial_shapes_list=spatial_shapes_list,
level_start_index=level_start_index,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
enc_outputs = tuple(
value
for value in [enc_topk_logits, enc_topk_bboxes, enc_outputs_class, enc_outputs_coord_logits]
if value is not None
)
dn_outputs = tuple(value if value is not None else None for value in [denoising_meta_values])
tuple_outputs = decoder_outputs + encoder_outputs + (init_reference_points,) + enc_outputs + dn_outputs
return tuple_outputs
return RTDetrModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
intermediate_logits=decoder_outputs.intermediate_logits,
intermediate_reference_points=decoder_outputs.intermediate_reference_points,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
init_reference_points=init_reference_points,
enc_topk_logits=enc_topk_logits,
enc_topk_bboxes=enc_topk_bboxes,
enc_outputs_class=enc_outputs_class,
enc_outputs_coord_logits=enc_outputs_coord_logits,
denoising_meta_values=denoising_meta_values,
)
@add_start_docstrings(
"""
RT-DETR Model (consisting of a backbone and encoder-decoder) outputting bounding boxes and logits to be further
decoded into scores and classes.
""",
RTDETR_START_DOCSTRING,
)
class RTDetrForObjectDetection(RTDetrPreTrainedModel):
# When using clones, all layers > 0 will be clones, but layer 0 *is* required
_tied_weights_keys = ["bbox_embed", "class_embed"]
# We can't initialize the model on meta device as some weights are modified during the initialization
_no_split_modules = None
def __init__(self, config: RTDetrConfig):
super().__init__(config)
# RTDETR encoder-decoder model
self.model = RTDetrModel(config)
# Detection heads on top
self.class_embed = partial(nn.Linear, config.d_model, config.num_labels)
self.bbox_embed = partial(RTDetrMLPPredictionHead, config, config.d_model, config.d_model, 4, num_layers=3)
# if two-stage, the last class_embed and bbox_embed is for region proposal generation
num_pred = config.decoder_layers
if config.with_box_refine:
self.class_embed = _get_clones(self.class_embed, num_pred)
self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
else:
self.class_embed = nn.ModuleList([self.class_embed() for _ in range(num_pred)])
self.bbox_embed = nn.ModuleList([self.bbox_embed() for _ in range(num_pred)])
# hack implementation for iterative bounding box refinement
self.model.decoder.class_embed = self.class_embed
self.model.decoder.bbox_embed = self.bbox_embed
# Initialize weights and apply final processing
self.post_init()
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class, outputs_coord)]
@add_start_docstrings_to_model_forward(RTDETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=RTDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**loss_kwargs,
) -> Union[Tuple[torch.FloatTensor], RTDetrObjectDetectionOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
Returns:
Examples:
```python
>>> from transformers import RTDetrImageProcessor, RTDetrForObjectDetection
>>> from PIL import Image
>>> import requests
>>> import torch
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
>>> model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 300, 80]
>>> boxes = outputs.pred_boxes
>>> list(boxes.shape)
[1, 300, 4]
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
... 0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(
... f"Detected {model.config.id2label[label.item()]} with confidence "
... f"{round(score.item(), 3)} at location {box}"
... )
Detected sofa with confidence 0.97 at location [0.14, 0.38, 640.13, 476.21]
Detected cat with confidence 0.96 at location [343.38, 24.28, 640.14, 371.5]
Detected cat with confidence 0.958 at location [13.23, 54.18, 318.98, 472.22]
Detected remote with confidence 0.951 at location [40.11, 73.44, 175.96, 118.48]
Detected remote with confidence 0.924 at location [333.73, 76.58, 369.97, 186.99]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
pixel_values,
pixel_mask=pixel_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
denoising_meta_values = (
outputs.denoising_meta_values if return_dict else outputs[-1] if self.training else None
)
outputs_class = outputs.intermediate_logits if return_dict else outputs[2]
outputs_coord = outputs.intermediate_reference_points if return_dict else outputs[3]
logits = outputs_class[:, -1]
pred_boxes = outputs_coord[:, -1]
loss, loss_dict, auxiliary_outputs, enc_topk_logits, enc_topk_bboxes = None, None, None, None, None
if labels is not None:
if self.training and denoising_meta_values is not None:
enc_topk_logits = outputs.enc_topk_logits if return_dict else outputs[-5]
enc_topk_bboxes = outputs.enc_topk_bboxes if return_dict else outputs[-4]
loss, loss_dict, auxiliary_outputs = self.loss_function(
logits,
labels,
self.device,
pred_boxes,
self.config,
outputs_class,
outputs_coord,
enc_topk_logits=enc_topk_logits,
enc_topk_bboxes=enc_topk_bboxes,
denoising_meta_values=denoising_meta_values,
**loss_kwargs,
)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes) + (auxiliary_outputs,) + outputs
else:
output = (logits, pred_boxes) + outputs
return ((loss, loss_dict) + output) if loss is not None else output
return RTDetrObjectDetectionOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=outputs.last_hidden_state,
intermediate_hidden_states=outputs.intermediate_hidden_states,
intermediate_logits=outputs.intermediate_logits,
intermediate_reference_points=outputs.intermediate_reference_points,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
init_reference_points=outputs.init_reference_points,
enc_topk_logits=outputs.enc_topk_logits,
enc_topk_bboxes=outputs.enc_topk_bboxes,
enc_outputs_class=outputs.enc_outputs_class,
enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
denoising_meta_values=outputs.denoising_meta_values,
) |