File size: 11,264 Bytes
94ccc87 f8551d8 94ccc87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import torch.nn as nn
import torch
from tqdm import tqdm
import os
from transformers import logging
from .utils import load_config, save_config
from .utils import get_controlnet_kwargs, get_latents_dir, init_model, seed_everything
from .utils import load_video, prepare_depth, save_frames, control_preprocess
# suppress partial model loading warning
logging.set_verbosity_error()
class Inverter(nn.Module):
def __init__(self, pipe, scheduler, config):
super().__init__()
self.device = config.device
self.use_depth = config.sd_version == "depth"
self.model_key = config.model_key
self.config = config
inv_config = config.inversion
float_precision = inv_config.float_precision if "float_precision" in inv_config else config.float_precision
if float_precision == "fp16":
self.dtype = torch.float16
print("[INFO] float precision fp16. Use torch.float16.")
else:
self.dtype = torch.float32
print("[INFO] float precision fp32. Use torch.float32.")
self.pipe = pipe
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.unet = pipe.unet
self.text_encoder = pipe.text_encoder
if config.enable_xformers_memory_efficient_attention:
try:
pipe.enable_xformers_memory_efficient_attention()
except ModuleNotFoundError:
print("[WARNING] xformers not found. Disable xformers attention.")
self.control = inv_config.control
if self.control != "none":
self.controlnet = pipe.controlnet
self.controlnet_scale = inv_config.control_scale
scheduler.set_timesteps(inv_config.save_steps)
self.timesteps_to_save = scheduler.timesteps
scheduler.set_timesteps(inv_config.steps)
self.scheduler = scheduler
self.prompt=inv_config.prompt
self.recon=inv_config.recon
self.save_latents=inv_config.save_intermediate
self.use_blip=inv_config.use_blip
self.steps=inv_config.steps
self.batch_size = inv_config.batch_size
self.force = inv_config.force
self.n_frames = inv_config.n_frames
self.frame_height, self.frame_width = config.height, config.width
self.work_dir = config.work_dir
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt=None, device="cuda"):
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
if negative_prompt is not None:
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def decode_latents(self, latents):
with torch.autocast(device_type=self.device, dtype=self.dtype):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
@torch.no_grad()
def decode_latents_batch(self, latents):
imgs = []
batch_latents = latents.split(self.batch_size, dim = 0)
for latent in batch_latents:
imgs += [self.decode_latents(latent)]
imgs = torch.cat(imgs)
return imgs
@torch.no_grad()
def encode_imgs(self, imgs):
with torch.autocast(device_type=self.device, dtype=self.dtype):
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.mean * 0.18215
return latents
@torch.no_grad()
def encode_imgs_batch(self, imgs):
latents = []
batch_imgs = imgs.split(self.batch_size, dim = 0)
for img in batch_imgs:
latents += [self.encode_imgs(img)]
latents = torch.cat(latents)
return latents
@torch.no_grad()
def ddim_inversion(self, x, conds, save_path):
print("[INFO] start DDIM Inversion!")
timesteps = reversed(self.scheduler.timesteps)
with torch.autocast(device_type=self.device, dtype=self.dtype):
for i, t in enumerate(tqdm(timesteps)):
noises = []
x_index = torch.arange(len(x))
batches = x_index.split(self.batch_size, dim = 0)
for batch in batches:
noise = self.pred_noise(
x[batch], conds[batch], timesteps[i], batch_idx=batch)
noises += [noise]
noises = torch.cat(noises)
x = self.pred_next_x(x, noises, t, i, inversion=True)
if self.save_latents and t in self.timesteps_to_save:
torch.save(x, os.path.join(
save_path, f'noisy_latents_{t}.pt'))
# Save inverted noise latents
pth = os.path.join(save_path, f'noisy_latents_{t}.pt')
torch.save(x, pth)
print(f"[INFO] inverted latent saved to: {pth}")
return x
@torch.no_grad()
def ddim_sample(self, x, conds):
print("[INFO] reconstructing frames...")
timesteps = self.scheduler.timesteps
with torch.autocast(device_type=self.device, dtype=self.dtype):
for i, t in enumerate(tqdm(timesteps)):
noises = []
x_index = torch.arange(len(x))
batches = x_index.split(self.batch_size, dim = 0)
for batch in batches:
noise = self.pred_noise(
x[batch], conds[batch], t, batch_idx=batch)
noises += [noise]
noises = torch.cat(noises)
x = self.pred_next_x(x, noises, t, i, inversion=False)
return x
@torch.no_grad()
def pred_noise(self, x, cond, t, batch_idx=None):
# For sd-depth model
if self.use_depth:
depth = self.depths
if batch_idx is not None:
depth = depth[batch_idx]
x = torch.cat([x, depth.to(x)], dim=1)
kwargs = dict()
# Compute controlnet outputs
if self.control != "none":
if batch_idx is None:
controlnet_cond = self.controlnet_images
else:
controlnet_cond = self.controlnet_images[batch_idx]
controlnet_kwargs = get_controlnet_kwargs(self.controlnet, x, cond, t, controlnet_cond, self.controlnet_scale)
kwargs.update(controlnet_kwargs)
eps = self.unet(x, t, encoder_hidden_states=cond, **kwargs).sample
return eps
@torch.no_grad()
def pred_next_x(self, x, eps, t, i, inversion=False):
if inversion:
timesteps = reversed(self.scheduler.timesteps)
else:
timesteps = self.scheduler.timesteps
alpha_prod_t = self.scheduler.alphas_cumprod[t]
if inversion:
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
else:
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i + 1]]
if i < len(timesteps) - 1
else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
if inversion:
pred_x0 = (x - sigma_prev * eps) / mu_prev
x = mu * pred_x0 + sigma * eps
else:
pred_x0 = (x - sigma * eps) / mu
x = mu_prev * pred_x0 + sigma_prev * eps
return x
@torch.no_grad()
def prepare_cond(self, prompts, n_frames):
if isinstance(prompts, str):
prompts = [prompts] * n_frames
cond = self.get_text_embeds(prompts[0])
conds = torch.cat([cond] * n_frames)
elif isinstance(prompts, list):
cond_ls = []
for prompt in prompts:
cond = self.get_text_embeds(prompt)
cond_ls += [cond]
conds = torch.cat(cond_ls)
return conds, prompts
def check_latent_exists(self, save_path):
save_timesteps = [self.scheduler.timesteps[0]]
if self.save_latents:
save_timesteps += self.timesteps_to_save
for ts in save_timesteps:
latent_path = os.path.join(
save_path, f'noisy_latents_{ts}.pt')
if not os.path.exists(latent_path):
return False
return True
@torch.no_grad()
def __call__(self, data_path, save_path):
self.scheduler.set_timesteps(self.steps)
save_path = get_latents_dir(save_path, self.model_key)
os.makedirs(save_path, exist_ok = True)
if self.check_latent_exists(save_path) and not self.force:
print(f"[INFO] inverted latents exist at: {save_path}. Skip inversion! Set 'inversion.force: True' to invert again.")
return
frames = load_video(data_path, self.frame_height, self.frame_width, device = self.device)
frame_ids = list(range(len(frames)))
if self.n_frames is not None:
frame_ids = frame_ids[:self.n_frames]
frames = frames[frame_ids]
if self.use_depth:
self.depths = prepare_depth(self.pipe, frames, frame_ids, self.work_dir)
conds, prompts = self.prepare_cond(self.prompt, len(frames))
with open(os.path.join(save_path, 'inversion_prompts.txt'), 'w') as f:
f.write('\n'.join(prompts))
if self.control != "none":
images = control_preprocess(
frames, self.control)
self.controlnet_images = images.to(self.device)
latents = self.encode_imgs_batch(frames)
torch.cuda.empty_cache()
print(f"[INFO] clean latents shape: {latents.shape}")
inverted_x = self.ddim_inversion(latents, conds, save_path)
save_config(self.config, save_path, inv = True)
if self.recon:
latent_reconstruction = self.ddim_sample(inverted_x, conds)
torch.cuda.empty_cache()
recon_frames = self.decode_latents_batch(
latent_reconstruction)
recon_save_path = os.path.join(save_path, 'recon_frames')
save_frames(recon_frames, recon_save_path, frame_ids = frame_ids)
if __name__ == "__main__":
config = load_config()
pipe, scheduler, model_key = init_model(
config.device, config.sd_version, config.model_key, config.inversion.control, config.float_precision)
config.model_key = model_key
seed_everything(config.seed)
inversion = Inverter(pipe, scheduler, config)
inversion(config.input_path, config.inversion.save_path) |