File size: 13,215 Bytes
ecbaf30
 
 
 
 
 
 
2899431
ecbaf30
 
 
 
 
2899431
 
ecbaf30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f9357
 
 
 
2899431
a7f9357
 
2899431
a7f9357
 
 
2899431
a7f9357
 
 
 
 
 
 
 
 
 
 
 
 
2899431
a7f9357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import contextlib
import random
import numpy as np
import os
from glob import glob
from PIL import Image, ImageSequence

import torch
from torchvision.io import read_video, write_video
import torchvision.transforms as T

from diffusers import DDIMScheduler, StableDiffusionControlNetPipeline, StableDiffusionPipeline, StableDiffusionDepth2ImgPipeline, ControlNetModel
from .controlnet_utils import CONTROLNET_DICT, control_preprocess
from einops import rearrange

FRAME_EXT = [".jpg", ".png"]


def init_model(device="cuda", sd_version="1.5", model_key=None, control_type="none", weight_dtype="fp16"):

    use_depth = False
    if model_key is None:
        if sd_version == '2.1':
            model_key = "stabilityai/stable-diffusion-2-1-base"
        elif sd_version == '2.0':
            model_key = "stabilityai/stable-diffusion-2-base"
        elif sd_version == '1.5':
            model_key = "runwayml/stable-diffusion-v1-5"
        elif sd_version == 'depth':
            model_key = "stabilityai/stable-diffusion-2-depth"
            use_depth = True
        else:
            raise ValueError(
                f'Stable-diffusion version {sd_version} not supported.')

        print(f'[INFO] loading stable diffusion from: {model_key}')
    else:
        print(f'[INFO] loading custome model from: {model_key}')

    scheduler = DDIMScheduler.from_pretrained(
        model_key, subfolder="scheduler")

    if weight_dtype == "fp16":
        weight_dtype = torch.float16
    else:
        weight_dtype = torch.float32

    if control_type not in ["none", "pnp"]:
        controlnet_key = CONTROLNET_DICT[control_type]
        print(f'[INFO] loading controlnet from: {controlnet_key}')
        controlnet = ControlNetModel.from_pretrained(
            controlnet_key, torch_dtype=weight_dtype)
        print(f'[INFO] loaded controlnet!')
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            model_key, controlnet=controlnet, torch_dtype=weight_dtype
        )
    elif use_depth:
        pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
            model_key, torch_dtype=weight_dtype
        )
    else:
        pipe = StableDiffusionPipeline.from_pretrained(
            # model_key, torch_dtype=weight_dtype
            model_key, torch_dtype=weight_dtype,
        )

    return pipe.to(device), scheduler, model_key


def seed_everything(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)


def load_image(image_path):
    image = Image.open(image_path).convert('RGB')
    image = T.ToTensor()(image)
    return image.unsqueeze(0)


def process_frames(frames, h, w):

    fh, fw = frames.shape[-2:]
    h = int(np.floor(h / 64.0)) * 64
    w = int(np.floor(w / 64.0)) * 64

    nw = int(fw / fh * h)
    if nw >= w:
        size = (h, nw)
    else:
        size = (int(fh / fw * w), w)

    assert len(frames.shape) >= 3
    if len(frames.shape) == 3:
        frames = [frames]

    print(
        f"[INFO] frame size {(fh, fw)} resize to {size} and centercrop to {(h, w)}")

    frame_ls = []
    for frame in frames:
        resized_frame = T.Resize(size)(frame)
        cropped_frame = T.CenterCrop([h, w])(resized_frame)
        # croped_frame = T.FiveCrop([h, w])(resized_frame)[0]
        frame_ls.append(cropped_frame)
    return torch.stack(frame_ls)


def glob_frame_paths(video_path):
    frame_paths = []
    for ext in FRAME_EXT:
        frame_paths += glob(os.path.join(video_path, f"*{ext}"))
    frame_paths = sorted(frame_paths)
    return frame_paths


def load_video(video_path, h, w, frame_ids=None, device="cuda"):
    

    if ".mp4" in video_path:
        frames, _, _ = read_video(
            video_path, output_format="TCHW", pts_unit="sec")
        frames = frames / 255
    elif ".gif" in video_path:
        frames = Image.open(video_path)
        frame_ls = []
        for frame in ImageSequence.Iterator(frames):
            frame_ls += [T.ToTensor()(frame.convert("RGB"))]
        frames = torch.stack(frame_ls)
    else:
        frame_paths = glob_frame_paths(video_path)
        frame_ls = []
        for frame_path in frame_paths:
            frame = load_image(frame_path)
            frame_ls.append(frame)
        frames = torch.cat(frame_ls)
    if frame_ids is not None:
        frames = frames[frame_ids]

    print(f"[INFO] loaded video with {len(frames)} frames from: {video_path}")

    frames = process_frames(frames, h, w)
    return frames.to(device)


def save_video(frames: torch.Tensor, path, frame_ids=None, save_frame=False):
    os.makedirs(path, exist_ok=True)
    if frame_ids is None:
        frame_ids = [i for i in range(len(frames))]
    frames = frames[frame_ids]

    proc_frames = (rearrange(frames, "T C H W -> T H W C") * 255).to(torch.uint8).cpu()
    write_video(os.path.join(path, "output.mp4"), proc_frames, fps = 30, video_codec="h264")
    print(f"[INFO] save video to {os.path.join(path, 'output.mp4')}")

    if save_frame:
        save_frames(frames, os.path.join(path, "frames"), frame_ids = frame_ids)
    

def save_frames(frames: torch.Tensor, path, ext="png", frame_ids=None):
    os.makedirs(path, exist_ok=True)
    if frame_ids is None:
        frame_ids = [i for i in range(len(frames))]
    for i, frame in zip(frame_ids, frames):
        T.ToPILImage()(frame).save(
            os.path.join(path, '{:04}.{}'.format(i, ext)))


def load_latent(latent_path, t, frame_ids=None):
    latent_fname = f'noisy_latents_{t}.pt'

    lp = os.path.join(latent_path, latent_fname)
    assert os.path.exists(
        lp), f"Latent at timestep {t} not found in {latent_path}."

    latents = torch.load(lp)
    if frame_ids is not None:
        latents = latents[frame_ids]
    
    # print(f"[INFO] loaded initial latent from {lp}")

    return latents

@torch.no_grad()
def prepare_depth(pipe, frames, frame_ids, work_dir):
    
    depth_ls = []
    depth_dir = os.path.join(work_dir, "depth")
    os.makedirs(depth_dir, exist_ok=True)
    for frame, frame_id in zip(frames, frame_ids):
        depth_path = os.path.join(depth_dir, "{:04}.pt".format(frame_id))
        depth = load_depth(pipe, depth_path, frame)
        depth_ls += [depth]
    print(f"[INFO] loaded depth images from {depth_path}")
    return torch.cat(depth_ls)

# From pix2video: code/file_utils.py

def load_depth(model, depth_path, input_image, dtype=torch.float32):
    if os.path.exists(depth_path):
        depth_map = torch.load(depth_path)
    else:
        input_image = T.ToPILImage()(input_image.squeeze())
        depth_map = prepare_depth_map(
            model, input_image, dtype=dtype, device=model.device)
        torch.save(depth_map, depth_path)
        depth_image = (((depth_map + 1.0) / 2.0) * 255).to(torch.uint8)
        T.ToPILImage()(depth_image.squeeze()).convert(
            "L").save(depth_path.replace(".pt", ".png"))

    return depth_map

@torch.no_grad()
def prepare_depth_map(model, image, depth_map=None, batch_size=1, do_classifier_free_guidance=False, dtype=torch.float32, device="cuda"):
    if isinstance(image, Image.Image):
        image = [image]
    else:
        image = list(image)

    if isinstance(image[0], Image.Image):
        width, height = image[0].size
    elif isinstance(image[0], np.ndarray):
        width, height = image[0].shape[:-1]
    else:
        height, width = image[0].shape[-2:]

    if depth_map is None:
        pixel_values = model.feature_extractor(
            images=image, return_tensors="pt").pixel_values
        pixel_values = pixel_values.to(device=device)
        # The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16.
        # So we use `torch.autocast` here for half precision inference.
        context_manger = torch.autocast(
            "cuda", dtype=dtype) if device.type == "cuda" else contextlib.nullcontext()
        with context_manger:
            ret = model.depth_estimator(pixel_values)
            depth_map = ret.predicted_depth
            # depth_image = ret.depth
    else:
        depth_map = depth_map.to(device=device, dtype=dtype)

    indices = depth_map != -1
    bg_indices = depth_map == -1
    min_d = depth_map[indices].min()

    if bg_indices.sum() > 0:
        depth_map[bg_indices] = min_d - 10
        # min_d = min_d - 10

    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1),
        size=(height // model.vae_scale_factor,
              width // model.vae_scale_factor),
        mode="bicubic",
        align_corners=False,
    )

    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
    depth_map = depth_map.to(dtype)

    # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
    if depth_map.shape[0] < batch_size:
        repeat_by = batch_size // depth_map.shape[0]
        depth_map = depth_map.repeat(repeat_by, 1, 1, 1)

    depth_map = torch.cat(
        [depth_map] * 2) if do_classifier_free_guidance else depth_map
    return depth_map


def get_latents_dir(latents_path, model_key):
    model_key = model_key.split("/")[-1]
    return os.path.join(latents_path, model_key)


def get_controlnet_kwargs(controlnet, x, cond, t, controlnet_cond, controlnet_scale=1.0):
    down_block_res_samples, mid_block_res_sample = controlnet(
        x,
        t,
        encoder_hidden_states=cond,
        controlnet_cond=controlnet_cond,
        return_dict=False,
    )
    down_block_res_samples = [
        down_block_res_sample * controlnet_scale
        for down_block_res_sample in down_block_res_samples
    ]
    mid_block_res_sample *= controlnet_scale
    controlnet_kwargs = {"down_block_additional_residuals": down_block_res_samples,
                         "mid_block_additional_residual": mid_block_res_sample}
    return controlnet_kwargs


def get_frame_ids(frame_range, frame_ids=None):
    if frame_ids is None:
        frame_ids = list(range(*frame_range))
    frame_ids = sorted(frame_ids)

    if len(frame_ids) > 4:
        frame_ids_str = "{} {} ... {} {}".format(
            *frame_ids[:2], *frame_ids[-2:])
    else:
        frame_ids_str = " ".join(["{}"] * len(frame_ids)).format(*frame_ids)
    print("[INFO] frame indexes: ", frame_ids_str)
    return frame_ids


def prepare_control(control, frames, frame_ids, save_path):
    if control not in CONTROLNET_DICT.keys():
        print(f"[WARNING] unknown controlnet type {control}")
        return None

    control_subdir = f'{save_path}/{control}_image'

    preprocess_flag = True
    if os.path.exists(control_subdir):
        print(f"[INFO] load control image from {control_subdir}.")
        control_image_ls = []
        for frame_id in frame_ids:
            image_path = os.path.join(
                control_subdir, "{:04}.png".format(frame_id))
            if not os.path.exists(image_path):
                break
            control_image_ls += [load_image(image_path)]
        else:
            preprocess_flag = False
            control_images = torch.cat(control_image_ls)

    if preprocess_flag:
        print("[INFO] preprocessing control images...")
        control_images = control_preprocess(frames, control)
        print(f"[INFO] save control images to {control_subdir}.")
        os.makedirs(control_subdir, exist_ok=True)
        for image, frame_id in zip(control_images, frame_ids):
            image_path = os.path.join(
                control_subdir, "{:04}.png".format(frame_id))
            T.ToPILImage()(image).save(image_path)

    return control_images
    
def isinstance_str(x: object, cls_name: str):
    """
    Checks whether x has any class *named* cls_name in its ancestry.
    Doesn't require access to the class's implementation.
    
    Useful for patching!
    """

    for _cls in x.__class__.__mro__:
        if _cls.__name__ == cls_name:
            return True
    
    return False

def init_generator(device: torch.device, fallback: torch.Generator=None):
    """
    Forks the current default random generator given device.
    """
    if device.type == "cpu":
        return torch.Generator(device="cpu").set_state(torch.get_rng_state())
    elif device.type == "cuda":
        return torch.Generator(device=device).set_state(torch.cuda.get_rng_state())
    else:
        if fallback is None:
            return init_generator(torch.device("cpu"))
        else:
            return fallback

def join_frame(x, fsize):
    """ Join multi-frame tokens """
    x = rearrange(x, "(B F) N C -> B (F N) C", F=fsize)
    return x

def split_frame(x, fsize):
    """ Split multi-frame tokens """
    x = rearrange(x, "B (F N) C -> (B F) N C", F=fsize)
    return x

def func_warper(funcs):
    """ Warp a function sequence """
    def fn(x, **kwarg):
        for func in funcs:
            x = func(x, **kwarg)
        return x
    return fn

def join_warper(fsize):
    def fn(x):
        x = join_frame(x, fsize)
        return x
    return fn

def split_warper(fsize):
    def fn(x):
        x = split_frame(x, fsize)
        return x
    return fn