File size: 15,208 Bytes
f5bb4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch.nn as nn
import torch
import numpy as np
from tqdm import tqdm
import os
from transformers import logging

from utils import CONTROLNET_DICT
from utils import load_config, save_config
from utils import get_controlnet_kwargs, get_frame_ids, get_latents_dir, init_model, seed_everything
from utils import prepare_control, load_latent, load_video, prepare_depth, save_video
from utils import register_time, register_attention_control, register_conv_control

import vidtome

# suppress partial model loading warning
logging.set_verbosity_error()


class Generator(nn.Module):
    def __init__(self, pipe, scheduler, config):
        super().__init__()

        self.device = config.device
        self.seed = config.seed



        
        self.model_key = config.model_key

        self.config = config
        gene_config = config.generation
        float_precision = gene_config.float_precision if "float_precision" in gene_config else config.float_precision
        if float_precision == "fp16":
            self.dtype = torch.float16
            print("[INFO] float precision fp16. Use torch.float16.")
        else:
            self.dtype = torch.float32
            print("[INFO] float precision fp32. Use torch.float32.")

        self.pipe = pipe
        self.vae = pipe.vae
        self.tokenizer = pipe.tokenizer
        self.unet = pipe.unet
        self.text_encoder = pipe.text_encoder
        if config.enable_xformers_memory_efficient_attention:
            try:
                pipe.enable_xformers_memory_efficient_attention()
            except ModuleNotFoundError:
                print("[WARNING] xformers not found. Disable xformers attention.")
        self.n_timesteps = gene_config.n_timesteps
        scheduler.set_timesteps(gene_config.n_timesteps, device=self.device)
        self.scheduler = scheduler

        self.batch_size = 2
        self.control = gene_config.control
        self.use_depth = config.sd_version == "depth"
        self.use_controlnet = self.control in CONTROLNET_DICT.keys()
        self.use_pnp = self.control == "pnp"
        if self.use_controlnet:
            self.controlnet = pipe.controlnet
            self.controlnet_scale = gene_config.control_scale
        elif self.use_pnp:
            pnp_f_t = int(gene_config.n_timesteps * gene_config.pnp_f_t)
            pnp_attn_t = int(gene_config.n_timesteps * gene_config.pnp_attn_t)
            self.batch_size += 1
            self.init_pnp(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)

        self.chunk_size = gene_config.chunk_size
        self.chunk_ord = gene_config.chunk_ord
        self.merge_global = gene_config.merge_global
        self.local_merge_ratio = gene_config.local_merge_ratio
        self.global_merge_ratio = gene_config.global_merge_ratio
        self.global_rand = gene_config.global_rand
        self.align_batch = gene_config.align_batch

        self.prompt = gene_config.prompt
        self.negative_prompt = gene_config.negative_prompt
        self.guidance_scale = gene_config.guidance_scale
        self.save_frame = gene_config.save_frame

        self.frame_height, self.frame_width = config.height, config.width
        self.work_dir = config.work_dir

        self.chunk_ord = gene_config.chunk_ord
        if "mix" in self.chunk_ord:
            self.perm_div = float(self.chunk_ord.split("-")[-1]) if "-" in self.chunk_ord else 3.
            self.chunk_ord = "mix"
        # Patch VidToMe to model
        self.activate_vidtome()

        if gene_config.use_lora:
            self.pipe.load_lora_weights(**gene_config.lora)
    
    def activate_vidtome(self):
        vidtome.apply_patch(self.pipe, self.local_merge_ratio, self.merge_global, self.global_merge_ratio, 
            seed = self.seed, batch_size = self.batch_size, align_batch = self.use_pnp or self.align_batch, global_rand = self.global_rand)        

    @torch.no_grad()
    def get_text_embeds_input(self, prompt, negative_prompt):
        text_embeds = self.get_text_embeds(
            prompt, negative_prompt, self.device)
        if self.use_pnp:
            pnp_guidance_embeds = self.get_text_embeds("", device=self.device)
            text_embeds = torch.cat(
                [pnp_guidance_embeds, text_embeds], dim=0)
        return text_embeds

    @torch.no_grad()
    def get_text_embeds(self, prompt, negative_prompt=None, device="cuda"):
        text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
                                    truncation=True, return_tensors='pt')
        text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
        if negative_prompt is not None:
            uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
                                          return_tensors='pt')
            uncond_embeddings = self.text_encoder(
                uncond_input.input_ids.to(device))[0]
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        return text_embeddings

    @torch.no_grad()
    def prepare_data(self, data_path, latent_path, frame_ids):
        self.frames = load_video(data_path, self.frame_height,
                                 self.frame_width, frame_ids=frame_ids, device=self.device)
        self.init_noise = load_latent(
            latent_path, t=self.scheduler.timesteps[0], frame_ids=frame_ids).to(self.dtype).to(self.device)

        if self.use_depth:
            self.depths = prepare_depth(
                self.pipe, self.frames, frame_ids, self.work_dir).to(self.init_noise)

        if self.use_controlnet:
            self.controlnet_images = prepare_control(
                self.control, self.frames, frame_ids, self.work_dir).to(self.init_noise)

    @torch.no_grad()
    def decode_latents(self, latents):
        with torch.autocast(device_type=self.device, dtype=self.dtype):
            latents = 1 / 0.18215 * latents
            imgs = self.vae.decode(latents).sample
            imgs = (imgs / 2 + 0.5).clamp(0, 1)
        return imgs

    @torch.no_grad()
    def decode_latents_batch(self, latents):
        imgs = []
        batch_latents = latents.split(self.batch_size, dim=0)
        for latent in batch_latents:
            imgs += [self.decode_latents(latent)]
        imgs = torch.cat(imgs)
        return imgs

    @torch.no_grad()
    def encode_imgs(self, imgs):
        with torch.autocast(device_type=self.device, dtype=self.dtype):
            imgs = 2 * imgs - 1
            posterior = self.vae.encode(imgs).latent_dist
            latents = posterior.mean * 0.18215
        return latents

    @torch.no_grad()
    def encode_imgs_batch(self, imgs):
        latents = []
        batch_imgs = imgs.split(self.batch_size, dim=0)
        for img in batch_imgs:
            latents += [self.encode_imgs(img)]
        latents = torch.cat(latents)
        return latents
    
    def get_chunks(self, flen):
        x_index = torch.arange(flen)

        # The first chunk has a random length
        rand_first = np.random.randint(0, self.chunk_size) + 1
        chunks = x_index[rand_first:].split(self.chunk_size, dim=0)
        chunks = [x_index[:rand_first]] + list(chunks) if len(chunks[0]) > 0 else [x_index[:rand_first]]
        if np.random.rand() > 0.5:
            chunks = chunks[::-1]
        
        # Chunk order only matter when we do global token merging
        if self.merge_global == False:
            return chunks

        # Chunk order. "seq": sequential order. "rand": full permutation. "mix": partial permutation.
        if self.chunk_ord == "rand":
            order = torch.randperm(len(chunks))
        elif self.chunk_ord == "mix":
            randord = torch.randperm(len(chunks)).tolist()
            rand_len = int(len(randord) / self.perm_div)
            seqord = sorted(randord[rand_len:])
            if rand_len > 0:
                randord = randord[:rand_len]
                if abs(seqord[-1] - randord[-1]) < abs(seqord[0] - randord[-1]):
                    seqord = seqord[::-1]
                order = randord + seqord
            else:
                order = seqord
        else:
            order = torch.arange(len(chunks))
        chunks = [chunks[i] for i in order]
        return chunks

    @torch.no_grad()
    def ddim_sample(self, x, conds):
        print("[INFO] denoising frames...")
        timesteps = self.scheduler.timesteps
        noises = torch.zeros_like(x)

        for i, t in enumerate(tqdm(timesteps, desc="Sampling")):
            self.pre_iter(x, t)

            # Split video into chunks and denoise
            chunks = self.get_chunks(len(x))
            for chunk in chunks:
                torch.cuda.empty_cache()
                noises[chunk] = self.pred_noise(
                    x[chunk], conds, t, batch_idx=chunk)

            x = self.pred_next_x(x, noises, t, i, inversion=False)

            self.post_iter(x, t)
        return x

    def pre_iter(self, x, t):
        if self.use_pnp:
            # Prepare PnP
            register_time(self, t.item())
            cur_latents = load_latent(self.latent_path, t=t, frame_ids = self.frame_ids)
            self.cur_latents = cur_latents

    def post_iter(self, x, t):
        if self.merge_global:
            # Reset global tokens
            vidtome.update_patch(self.pipe, global_tokens = None)

    @torch.no_grad()
    def pred_noise(self, x, cond, t, batch_idx=None):

        flen = len(x)
        text_embed_input = cond.repeat_interleave(flen, dim=0)

        # For classifier-free guidance
        latent_model_input = torch.cat([x, x])
        batch_size = 2

        if self.use_pnp:
            # Cat latents from inverted source frames for PnP operation
            source_latents = self.cur_latents
            if batch_idx is not None:
                source_latents = source_latents[batch_idx]
            latent_model_input = torch.cat([source_latents.to(x), latent_model_input])
            batch_size += 1

        # For sd-depth model
        if self.use_depth:
            depth = self.depths
            if batch_idx is not None:
                depth = depth[batch_idx]
            depth = depth.repeat(batch_size, 1, 1, 1)
            latent_model_input = torch.cat([latent_model_input, depth.to(x)], dim=1)
        
        kwargs = dict()
        # Compute controlnet outputs
        if self.use_controlnet:
            controlnet_cond = self.controlnet_images
            if batch_idx is not None:
                controlnet_cond = controlnet_cond[batch_idx]
            controlnet_cond = controlnet_cond.repeat(batch_size, 1, 1, 1)
            controlnet_kwargs = get_controlnet_kwargs(
                self.controlnet, latent_model_input, text_embed_input, t, controlnet_cond, self.controlnet_scale)
            kwargs.update(controlnet_kwargs)
        # Pred noise!
        eps = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input, **kwargs).sample
        noise_pred_uncond, noise_pred_cond = eps.chunk(batch_size)[-2:]
        # CFG
        noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
        return noise_pred

    @torch.no_grad()
    def pred_next_x(self, x, eps, t, i, inversion=False):
        if inversion:
            timesteps = reversed(self.scheduler.timesteps)
        else:
            timesteps = self.scheduler.timesteps
        alpha_prod_t = self.scheduler.alphas_cumprod[t]
        if inversion:
            alpha_prod_t_prev = (
                self.scheduler.alphas_cumprod[timesteps[i - 1]]
                if i > 0 else self.scheduler.final_alpha_cumprod
            )
        else:
            alpha_prod_t_prev = (
                self.scheduler.alphas_cumprod[timesteps[i + 1]]
                if i < len(timesteps) - 1
                else self.scheduler.final_alpha_cumprod
            )
        mu = alpha_prod_t ** 0.5
        sigma = (1 - alpha_prod_t) ** 0.5
        mu_prev = alpha_prod_t_prev ** 0.5
        sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

        if inversion:
            pred_x0 = (x - sigma_prev * eps) / mu_prev
            x = mu * pred_x0 + sigma * eps
        else:
            pred_x0 = (x - sigma * eps) / mu
            x = mu_prev * pred_x0 + sigma_prev * eps

        return x

    def init_pnp(self, conv_injection_t, qk_injection_t):
        qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
        conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
        register_attention_control(
            self, qk_injection_timesteps, num_inputs=self.batch_size)
        register_conv_control(
            self, conv_injection_timesteps, num_inputs=self.batch_size)

    def check_latent_exists(self, latent_path):
        if self.use_pnp:
            timesteps = self.scheduler.timesteps
        else:
            timesteps = [self.scheduler.timesteps[0]]

        for ts in timesteps:
            cur_latent_path = os.path.join(
                latent_path, f'noisy_latents_{ts}.pt')
            if not os.path.exists(cur_latent_path):
                return False
        return True

    @torch.no_grad()
    def __call__(self, data_path, latent_path, output_path, frame_ids):
        self.scheduler.set_timesteps(self.n_timesteps)
        latent_path = get_latents_dir(latent_path, self.model_key)
        assert self.check_latent_exists(
            latent_path), f"Required latent not found at {latent_path}. \
                    Note: If using PnP as control, you need inversion latents saved \
                     at each generation timestep."
        
        self.data_path = data_path
        self.latent_path = latent_path
        self.frame_ids = frame_ids
        self.prepare_data(data_path, latent_path, frame_ids)

        print(f"[INFO] initial noise latent shape: {self.init_noise.shape}")

        for edit_name, edit_prompt in self.prompt.items():
            print(f"[INFO] current prompt: {edit_prompt}")
            conds = self.get_text_embeds_input(edit_prompt, self.negative_prompt)
            # Comment this if you have enough GPU memory
            clean_latent = self.ddim_sample(self.init_noise, conds)
            torch.cuda.empty_cache()
            clean_frames = self.decode_latents_batch(clean_latent)
            cur_output_path = os.path.join(output_path, edit_name)
            save_config(self.config, cur_output_path, gene = True)
            save_video(clean_frames, cur_output_path, save_frame = self.save_frame)


        


if __name__ == "__main__":
    config = load_config()
    pipe, scheduler, model_key = init_model(
        config.device, config.sd_version, config.model_key, config.generation.control, config.float_precision)
    config.model_key = model_key
    seed_everything(config.seed)
    generator = Generator(pipe, scheduler, config)
    frame_ids = get_frame_ids(
        config.generation.frame_range, config.generation.frame_ids)
    generator(config.input_path, config.generation.latents_path,
              config.generation.output_path, frame_ids=frame_ids)