VidToMe / utils.py
jadechoghari's picture
Update utils.py
ecbaf30 verified
raw
history blame
13.2 kB
import contextlib
import random
import numpy as np
import os
from glob import glob
from PIL import Image, ImageSequence
import torch
from torchvision.io import read_video, write_video
import torchvision.transforms as T
from diffusers import DDIMScheduler, StableDiffusionControlNetPipeline, StableDiffusionPipeline, StableDiffusionDepth2ImgPipeline, ControlNetModel
from .controlnet_utils import CONTROLNET_DICT, control_preprocess
from einops import rearrange
FRAME_EXT = [".jpg", ".png"]
def init_model(device="cuda", sd_version="1.5", model_key=None, control_type="none", weight_dtype="fp16"):
use_depth = False
if model_key is None:
if sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
elif sd_version == 'depth':
model_key = "stabilityai/stable-diffusion-2-depth"
use_depth = True
else:
raise ValueError(
f'Stable-diffusion version {sd_version} not supported.')
print(f'[INFO] loading stable diffusion from: {model_key}')
else:
print(f'[INFO] loading custome model from: {model_key}')
scheduler = DDIMScheduler.from_pretrained(
model_key, subfolder="scheduler")
if weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
if control_type not in ["none", "pnp"]:
controlnet_key = CONTROLNET_DICT[control_type]
print(f'[INFO] loading controlnet from: {controlnet_key}')
controlnet = ControlNetModel.from_pretrained(
controlnet_key, torch_dtype=weight_dtype)
print(f'[INFO] loaded controlnet!')
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_key, controlnet=controlnet, torch_dtype=weight_dtype
)
elif use_depth:
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
model_key, torch_dtype=weight_dtype
)
else:
pipe = StableDiffusionPipeline.from_pretrained(
# model_key, torch_dtype=weight_dtype
model_key, torch_dtype=weight_dtype,
)
return pipe.to(device), scheduler, model_key
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def load_image(image_path):
image = Image.open(image_path).convert('RGB')
image = T.ToTensor()(image)
return image.unsqueeze(0)
def process_frames(frames, h, w):
fh, fw = frames.shape[-2:]
h = int(np.floor(h / 64.0)) * 64
w = int(np.floor(w / 64.0)) * 64
nw = int(fw / fh * h)
if nw >= w:
size = (h, nw)
else:
size = (int(fh / fw * w), w)
assert len(frames.shape) >= 3
if len(frames.shape) == 3:
frames = [frames]
print(
f"[INFO] frame size {(fh, fw)} resize to {size} and centercrop to {(h, w)}")
frame_ls = []
for frame in frames:
resized_frame = T.Resize(size)(frame)
cropped_frame = T.CenterCrop([h, w])(resized_frame)
# croped_frame = T.FiveCrop([h, w])(resized_frame)[0]
frame_ls.append(cropped_frame)
return torch.stack(frame_ls)
def glob_frame_paths(video_path):
frame_paths = []
for ext in FRAME_EXT:
frame_paths += glob(os.path.join(video_path, f"*{ext}"))
frame_paths = sorted(frame_paths)
return frame_paths
def load_video(video_path, h, w, frame_ids=None, device="cuda"):
if ".mp4" in video_path:
frames, _, _ = read_video(
video_path, output_format="TCHW", pts_unit="sec")
frames = frames / 255
elif ".gif" in video_path:
frames = Image.open(video_path)
frame_ls = []
for frame in ImageSequence.Iterator(frames):
frame_ls += [T.ToTensor()(frame.convert("RGB"))]
frames = torch.stack(frame_ls)
else:
frame_paths = glob_frame_paths(video_path)
frame_ls = []
for frame_path in frame_paths:
frame = load_image(frame_path)
frame_ls.append(frame)
frames = torch.cat(frame_ls)
if frame_ids is not None:
frames = frames[frame_ids]
print(f"[INFO] loaded video with {len(frames)} frames from: {video_path}")
frames = process_frames(frames, h, w)
return frames.to(device)
def save_video(frames: torch.Tensor, path, frame_ids=None, save_frame=False):
os.makedirs(path, exist_ok=True)
if frame_ids is None:
frame_ids = [i for i in range(len(frames))]
frames = frames[frame_ids]
proc_frames = (rearrange(frames, "T C H W -> T H W C") * 255).to(torch.uint8).cpu()
write_video(os.path.join(path, "output.mp4"), proc_frames, fps = 30, video_codec="h264")
print(f"[INFO] save video to {os.path.join(path, 'output.mp4')}")
if save_frame:
save_frames(frames, os.path.join(path, "frames"), frame_ids = frame_ids)
def save_frames(frames: torch.Tensor, path, ext="png", frame_ids=None):
os.makedirs(path, exist_ok=True)
if frame_ids is None:
frame_ids = [i for i in range(len(frames))]
for i, frame in zip(frame_ids, frames):
T.ToPILImage()(frame).save(
os.path.join(path, '{:04}.{}'.format(i, ext)))
def load_latent(latent_path, t, frame_ids=None):
latent_fname = f'noisy_latents_{t}.pt'
lp = os.path.join(latent_path, latent_fname)
assert os.path.exists(
lp), f"Latent at timestep {t} not found in {latent_path}."
latents = torch.load(lp)
if frame_ids is not None:
latents = latents[frame_ids]
# print(f"[INFO] loaded initial latent from {lp}")
return latents
@torch.no_grad()
def prepare_depth(pipe, frames, frame_ids, work_dir):
depth_ls = []
depth_dir = os.path.join(work_dir, "depth")
os.makedirs(depth_dir, exist_ok=True)
for frame, frame_id in zip(frames, frame_ids):
depth_path = os.path.join(depth_dir, "{:04}.pt".format(frame_id))
depth = load_depth(pipe, depth_path, frame)
depth_ls += [depth]
print(f"[INFO] loaded depth images from {depth_path}")
return torch.cat(depth_ls)
# From pix2video: code/file_utils.py
def load_depth(model, depth_path, input_image, dtype=torch.float32):
if os.path.exists(depth_path):
depth_map = torch.load(depth_path)
else:
input_image = T.ToPILImage()(input_image.squeeze())
depth_map = prepare_depth_map(
model, input_image, dtype=dtype, device=model.device)
torch.save(depth_map, depth_path)
depth_image = (((depth_map + 1.0) / 2.0) * 255).to(torch.uint8)
T.ToPILImage()(depth_image.squeeze()).convert(
"L").save(depth_path.replace(".pt", ".png"))
return depth_map
@torch.no_grad()
def prepare_depth_map(model, image, depth_map=None, batch_size=1, do_classifier_free_guidance=False, dtype=torch.float32, device="cuda"):
if isinstance(image, Image.Image):
image = [image]
else:
image = list(image)
if isinstance(image[0], Image.Image):
width, height = image[0].size
elif isinstance(image[0], np.ndarray):
width, height = image[0].shape[:-1]
else:
height, width = image[0].shape[-2:]
if depth_map is None:
pixel_values = model.feature_extractor(
images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device=device)
# The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16.
# So we use `torch.autocast` here for half precision inference.
context_manger = torch.autocast(
"cuda", dtype=dtype) if device.type == "cuda" else contextlib.nullcontext()
with context_manger:
ret = model.depth_estimator(pixel_values)
depth_map = ret.predicted_depth
# depth_image = ret.depth
else:
depth_map = depth_map.to(device=device, dtype=dtype)
indices = depth_map != -1
bg_indices = depth_map == -1
min_d = depth_map[indices].min()
if bg_indices.sum() > 0:
depth_map[bg_indices] = min_d - 10
# min_d = min_d - 10
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(height // model.vae_scale_factor,
width // model.vae_scale_factor),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_map = depth_map.to(dtype)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if depth_map.shape[0] < batch_size:
repeat_by = batch_size // depth_map.shape[0]
depth_map = depth_map.repeat(repeat_by, 1, 1, 1)
depth_map = torch.cat(
[depth_map] * 2) if do_classifier_free_guidance else depth_map
return depth_map
def get_latents_dir(latents_path, model_key):
model_key = model_key.split("/")[-1]
return os.path.join(latents_path, model_key)
def get_controlnet_kwargs(controlnet, x, cond, t, controlnet_cond, controlnet_scale=1.0):
down_block_res_samples, mid_block_res_sample = controlnet(
x,
t,
encoder_hidden_states=cond,
controlnet_cond=controlnet_cond,
return_dict=False,
)
down_block_res_samples = [
down_block_res_sample * controlnet_scale
for down_block_res_sample in down_block_res_samples
]
mid_block_res_sample *= controlnet_scale
controlnet_kwargs = {"down_block_additional_residuals": down_block_res_samples,
"mid_block_additional_residual": mid_block_res_sample}
return controlnet_kwargs
def get_frame_ids(frame_range, frame_ids=None):
if frame_ids is None:
frame_ids = list(range(*frame_range))
frame_ids = sorted(frame_ids)
if len(frame_ids) > 4:
frame_ids_str = "{} {} ... {} {}".format(
*frame_ids[:2], *frame_ids[-2:])
else:
frame_ids_str = " ".join(["{}"] * len(frame_ids)).format(*frame_ids)
print("[INFO] frame indexes: ", frame_ids_str)
return frame_ids
def prepare_control(control, frames, frame_ids, save_path):
if control not in CONTROLNET_DICT.keys():
print(f"[WARNING] unknown controlnet type {control}")
return None
control_subdir = f'{save_path}/{control}_image'
preprocess_flag = True
if os.path.exists(control_subdir):
print(f"[INFO] load control image from {control_subdir}.")
control_image_ls = []
for frame_id in frame_ids:
image_path = os.path.join(
control_subdir, "{:04}.png".format(frame_id))
if not os.path.exists(image_path):
break
control_image_ls += [load_image(image_path)]
else:
preprocess_flag = False
control_images = torch.cat(control_image_ls)
if preprocess_flag:
print("[INFO] preprocessing control images...")
control_images = control_preprocess(frames, control)
print(f"[INFO] save control images to {control_subdir}.")
os.makedirs(control_subdir, exist_ok=True)
for image, frame_id in zip(control_images, frame_ids):
image_path = os.path.join(
control_subdir, "{:04}.png".format(frame_id))
T.ToPILImage()(image).save(image_path)
return control_images
def isinstance_str(x: object, cls_name: str):
"""
Checks whether x has any class *named* cls_name in its ancestry.
Doesn't require access to the class's implementation.
Useful for patching!
"""
for _cls in x.__class__.__mro__:
if _cls.__name__ == cls_name:
return True
return False
def init_generator(device: torch.device, fallback: torch.Generator=None):
"""
Forks the current default random generator given device.
"""
if device.type == "cpu":
return torch.Generator(device="cpu").set_state(torch.get_rng_state())
elif device.type == "cuda":
return torch.Generator(device=device).set_state(torch.cuda.get_rng_state())
else:
if fallback is None:
return init_generator(torch.device("cpu"))
else:
return fallback
def join_frame(x, fsize):
""" Join multi-frame tokens """
x = rearrange(x, "(B F) N C -> B (F N) C", F=fsize)
return x
def split_frame(x, fsize):
""" Split multi-frame tokens """
x = rearrange(x, "B (F N) C -> (B F) N C", F=fsize)
return x
def func_warper(funcs):
""" Warp a function sequence """
def fn(x, **kwarg):
for func in funcs:
x = func(x, **kwarg)
return x
return fn
def join_warper(fsize):
def fn(x):
x = join_frame(x, fsize)
return x
return fn
def split_warper(fsize):
def fn(x):
x = split_frame(x, fsize)
return x
return fn