VidToMe / generate.py
jadechoghari's picture
Create generate.py
f5bb4af verified
raw
history blame
15.2 kB
import torch.nn as nn
import torch
import numpy as np
from tqdm import tqdm
import os
from transformers import logging
from utils import CONTROLNET_DICT
from utils import load_config, save_config
from utils import get_controlnet_kwargs, get_frame_ids, get_latents_dir, init_model, seed_everything
from utils import prepare_control, load_latent, load_video, prepare_depth, save_video
from utils import register_time, register_attention_control, register_conv_control
import vidtome
# suppress partial model loading warning
logging.set_verbosity_error()
class Generator(nn.Module):
def __init__(self, pipe, scheduler, config):
super().__init__()
self.device = config.device
self.seed = config.seed
self.model_key = config.model_key
self.config = config
gene_config = config.generation
float_precision = gene_config.float_precision if "float_precision" in gene_config else config.float_precision
if float_precision == "fp16":
self.dtype = torch.float16
print("[INFO] float precision fp16. Use torch.float16.")
else:
self.dtype = torch.float32
print("[INFO] float precision fp32. Use torch.float32.")
self.pipe = pipe
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.unet = pipe.unet
self.text_encoder = pipe.text_encoder
if config.enable_xformers_memory_efficient_attention:
try:
pipe.enable_xformers_memory_efficient_attention()
except ModuleNotFoundError:
print("[WARNING] xformers not found. Disable xformers attention.")
self.n_timesteps = gene_config.n_timesteps
scheduler.set_timesteps(gene_config.n_timesteps, device=self.device)
self.scheduler = scheduler
self.batch_size = 2
self.control = gene_config.control
self.use_depth = config.sd_version == "depth"
self.use_controlnet = self.control in CONTROLNET_DICT.keys()
self.use_pnp = self.control == "pnp"
if self.use_controlnet:
self.controlnet = pipe.controlnet
self.controlnet_scale = gene_config.control_scale
elif self.use_pnp:
pnp_f_t = int(gene_config.n_timesteps * gene_config.pnp_f_t)
pnp_attn_t = int(gene_config.n_timesteps * gene_config.pnp_attn_t)
self.batch_size += 1
self.init_pnp(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
self.chunk_size = gene_config.chunk_size
self.chunk_ord = gene_config.chunk_ord
self.merge_global = gene_config.merge_global
self.local_merge_ratio = gene_config.local_merge_ratio
self.global_merge_ratio = gene_config.global_merge_ratio
self.global_rand = gene_config.global_rand
self.align_batch = gene_config.align_batch
self.prompt = gene_config.prompt
self.negative_prompt = gene_config.negative_prompt
self.guidance_scale = gene_config.guidance_scale
self.save_frame = gene_config.save_frame
self.frame_height, self.frame_width = config.height, config.width
self.work_dir = config.work_dir
self.chunk_ord = gene_config.chunk_ord
if "mix" in self.chunk_ord:
self.perm_div = float(self.chunk_ord.split("-")[-1]) if "-" in self.chunk_ord else 3.
self.chunk_ord = "mix"
# Patch VidToMe to model
self.activate_vidtome()
if gene_config.use_lora:
self.pipe.load_lora_weights(**gene_config.lora)
def activate_vidtome(self):
vidtome.apply_patch(self.pipe, self.local_merge_ratio, self.merge_global, self.global_merge_ratio,
seed = self.seed, batch_size = self.batch_size, align_batch = self.use_pnp or self.align_batch, global_rand = self.global_rand)
@torch.no_grad()
def get_text_embeds_input(self, prompt, negative_prompt):
text_embeds = self.get_text_embeds(
prompt, negative_prompt, self.device)
if self.use_pnp:
pnp_guidance_embeds = self.get_text_embeds("", device=self.device)
text_embeds = torch.cat(
[pnp_guidance_embeds, text_embeds], dim=0)
return text_embeds
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt=None, device="cuda"):
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
if negative_prompt is not None:
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def prepare_data(self, data_path, latent_path, frame_ids):
self.frames = load_video(data_path, self.frame_height,
self.frame_width, frame_ids=frame_ids, device=self.device)
self.init_noise = load_latent(
latent_path, t=self.scheduler.timesteps[0], frame_ids=frame_ids).to(self.dtype).to(self.device)
if self.use_depth:
self.depths = prepare_depth(
self.pipe, self.frames, frame_ids, self.work_dir).to(self.init_noise)
if self.use_controlnet:
self.controlnet_images = prepare_control(
self.control, self.frames, frame_ids, self.work_dir).to(self.init_noise)
@torch.no_grad()
def decode_latents(self, latents):
with torch.autocast(device_type=self.device, dtype=self.dtype):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
@torch.no_grad()
def decode_latents_batch(self, latents):
imgs = []
batch_latents = latents.split(self.batch_size, dim=0)
for latent in batch_latents:
imgs += [self.decode_latents(latent)]
imgs = torch.cat(imgs)
return imgs
@torch.no_grad()
def encode_imgs(self, imgs):
with torch.autocast(device_type=self.device, dtype=self.dtype):
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.mean * 0.18215
return latents
@torch.no_grad()
def encode_imgs_batch(self, imgs):
latents = []
batch_imgs = imgs.split(self.batch_size, dim=0)
for img in batch_imgs:
latents += [self.encode_imgs(img)]
latents = torch.cat(latents)
return latents
def get_chunks(self, flen):
x_index = torch.arange(flen)
# The first chunk has a random length
rand_first = np.random.randint(0, self.chunk_size) + 1
chunks = x_index[rand_first:].split(self.chunk_size, dim=0)
chunks = [x_index[:rand_first]] + list(chunks) if len(chunks[0]) > 0 else [x_index[:rand_first]]
if np.random.rand() > 0.5:
chunks = chunks[::-1]
# Chunk order only matter when we do global token merging
if self.merge_global == False:
return chunks
# Chunk order. "seq": sequential order. "rand": full permutation. "mix": partial permutation.
if self.chunk_ord == "rand":
order = torch.randperm(len(chunks))
elif self.chunk_ord == "mix":
randord = torch.randperm(len(chunks)).tolist()
rand_len = int(len(randord) / self.perm_div)
seqord = sorted(randord[rand_len:])
if rand_len > 0:
randord = randord[:rand_len]
if abs(seqord[-1] - randord[-1]) < abs(seqord[0] - randord[-1]):
seqord = seqord[::-1]
order = randord + seqord
else:
order = seqord
else:
order = torch.arange(len(chunks))
chunks = [chunks[i] for i in order]
return chunks
@torch.no_grad()
def ddim_sample(self, x, conds):
print("[INFO] denoising frames...")
timesteps = self.scheduler.timesteps
noises = torch.zeros_like(x)
for i, t in enumerate(tqdm(timesteps, desc="Sampling")):
self.pre_iter(x, t)
# Split video into chunks and denoise
chunks = self.get_chunks(len(x))
for chunk in chunks:
torch.cuda.empty_cache()
noises[chunk] = self.pred_noise(
x[chunk], conds, t, batch_idx=chunk)
x = self.pred_next_x(x, noises, t, i, inversion=False)
self.post_iter(x, t)
return x
def pre_iter(self, x, t):
if self.use_pnp:
# Prepare PnP
register_time(self, t.item())
cur_latents = load_latent(self.latent_path, t=t, frame_ids = self.frame_ids)
self.cur_latents = cur_latents
def post_iter(self, x, t):
if self.merge_global:
# Reset global tokens
vidtome.update_patch(self.pipe, global_tokens = None)
@torch.no_grad()
def pred_noise(self, x, cond, t, batch_idx=None):
flen = len(x)
text_embed_input = cond.repeat_interleave(flen, dim=0)
# For classifier-free guidance
latent_model_input = torch.cat([x, x])
batch_size = 2
if self.use_pnp:
# Cat latents from inverted source frames for PnP operation
source_latents = self.cur_latents
if batch_idx is not None:
source_latents = source_latents[batch_idx]
latent_model_input = torch.cat([source_latents.to(x), latent_model_input])
batch_size += 1
# For sd-depth model
if self.use_depth:
depth = self.depths
if batch_idx is not None:
depth = depth[batch_idx]
depth = depth.repeat(batch_size, 1, 1, 1)
latent_model_input = torch.cat([latent_model_input, depth.to(x)], dim=1)
kwargs = dict()
# Compute controlnet outputs
if self.use_controlnet:
controlnet_cond = self.controlnet_images
if batch_idx is not None:
controlnet_cond = controlnet_cond[batch_idx]
controlnet_cond = controlnet_cond.repeat(batch_size, 1, 1, 1)
controlnet_kwargs = get_controlnet_kwargs(
self.controlnet, latent_model_input, text_embed_input, t, controlnet_cond, self.controlnet_scale)
kwargs.update(controlnet_kwargs)
# Pred noise!
eps = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input, **kwargs).sample
noise_pred_uncond, noise_pred_cond = eps.chunk(batch_size)[-2:]
# CFG
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
return noise_pred
@torch.no_grad()
def pred_next_x(self, x, eps, t, i, inversion=False):
if inversion:
timesteps = reversed(self.scheduler.timesteps)
else:
timesteps = self.scheduler.timesteps
alpha_prod_t = self.scheduler.alphas_cumprod[t]
if inversion:
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
else:
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i + 1]]
if i < len(timesteps) - 1
else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
if inversion:
pred_x0 = (x - sigma_prev * eps) / mu_prev
x = mu * pred_x0 + sigma * eps
else:
pred_x0 = (x - sigma * eps) / mu
x = mu_prev * pred_x0 + sigma_prev * eps
return x
def init_pnp(self, conv_injection_t, qk_injection_t):
qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
register_attention_control(
self, qk_injection_timesteps, num_inputs=self.batch_size)
register_conv_control(
self, conv_injection_timesteps, num_inputs=self.batch_size)
def check_latent_exists(self, latent_path):
if self.use_pnp:
timesteps = self.scheduler.timesteps
else:
timesteps = [self.scheduler.timesteps[0]]
for ts in timesteps:
cur_latent_path = os.path.join(
latent_path, f'noisy_latents_{ts}.pt')
if not os.path.exists(cur_latent_path):
return False
return True
@torch.no_grad()
def __call__(self, data_path, latent_path, output_path, frame_ids):
self.scheduler.set_timesteps(self.n_timesteps)
latent_path = get_latents_dir(latent_path, self.model_key)
assert self.check_latent_exists(
latent_path), f"Required latent not found at {latent_path}. \
Note: If using PnP as control, you need inversion latents saved \
at each generation timestep."
self.data_path = data_path
self.latent_path = latent_path
self.frame_ids = frame_ids
self.prepare_data(data_path, latent_path, frame_ids)
print(f"[INFO] initial noise latent shape: {self.init_noise.shape}")
for edit_name, edit_prompt in self.prompt.items():
print(f"[INFO] current prompt: {edit_prompt}")
conds = self.get_text_embeds_input(edit_prompt, self.negative_prompt)
# Comment this if you have enough GPU memory
clean_latent = self.ddim_sample(self.init_noise, conds)
torch.cuda.empty_cache()
clean_frames = self.decode_latents_batch(clean_latent)
cur_output_path = os.path.join(output_path, edit_name)
save_config(self.config, cur_output_path, gene = True)
save_video(clean_frames, cur_output_path, save_frame = self.save_frame)
if __name__ == "__main__":
config = load_config()
pipe, scheduler, model_key = init_model(
config.device, config.sd_version, config.model_key, config.generation.control, config.float_precision)
config.model_key = model_key
seed_everything(config.seed)
generator = Generator(pipe, scheduler, config)
frame_ids = get_frame_ids(
config.generation.frame_range, config.generation.frame_ids)
generator(config.input_path, config.generation.latents_path,
config.generation.output_path, frame_ids=frame_ids)