|
import math |
|
import time |
|
from typing import Type, Dict, Any, Tuple, Callable |
|
|
|
import numpy as np |
|
from einops import rearrange |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from .merge import bipartite_soft_matching_randframe, bipartite_soft_matching_2s, do_nothing |
|
from .utils import isinstance_str, init_generator, join_frame, split_frame, func_warper, join_warper, split_warper |
|
|
|
|
|
def compute_merge(module: torch.nn.Module, x: torch.Tensor, tome_info: Dict[str, Any]) -> Tuple[Callable, ...]: |
|
original_h, original_w = tome_info["size"] |
|
original_tokens = original_h * original_w |
|
downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1]))) |
|
|
|
args = tome_info["args"] |
|
generator = module.generator |
|
|
|
|
|
fsize = x.shape[0] // args["batch_size"] |
|
tsize = x.shape[1] |
|
|
|
|
|
if downsample <= args["max_downsample"]: |
|
|
|
if args["generator"] is None: |
|
args["generator"] = init_generator(x.device) |
|
|
|
elif args["generator"].device != x.device: |
|
args["generator"] = init_generator(x.device, fallback=args["generator"]) |
|
|
|
|
|
|
|
local_tokens = join_frame(x, fsize) |
|
m_ls = [join_warper(fsize)] |
|
u_ls = [split_warper(fsize)] |
|
unm = 0 |
|
curF = fsize |
|
|
|
|
|
while curF > 1: |
|
m, u, ret_dict = bipartite_soft_matching_randframe( |
|
local_tokens, curF, args["local_merge_ratio"], unm, generator, args["target_stride"], args["align_batch"]) |
|
unm += ret_dict["unm_num"] |
|
m_ls.append(m) |
|
u_ls.append(u) |
|
local_tokens = m(local_tokens) |
|
|
|
|
|
|
|
curF = (local_tokens.shape[1] - unm) // tsize |
|
|
|
merged_tokens = local_tokens |
|
|
|
|
|
if args["merge_global"]: |
|
if hasattr(module, "global_tokens") and module.global_tokens is not None: |
|
|
|
if torch.rand(1, generator=generator, device=generator.device) > args["global_rand"]: |
|
src_len = local_tokens.shape[1] |
|
tokens = torch.cat( |
|
[local_tokens, module.global_tokens.to(local_tokens)], dim=1) |
|
local_chunk = 0 |
|
else: |
|
src_len = module.global_tokens.shape[1] |
|
tokens = torch.cat( |
|
[module.global_tokens.to(local_tokens), local_tokens], dim=1) |
|
local_chunk = 1 |
|
|
|
m, u, _ = bipartite_soft_matching_2s( |
|
tokens, src_len, args["global_merge_ratio"], args["align_batch"], unmerge_chunk=local_chunk) |
|
merged_tokens = m(tokens) |
|
m_ls.append(m) |
|
u_ls.append(u) |
|
|
|
|
|
module.global_tokens = u(merged_tokens).detach().clone().cpu() |
|
else: |
|
module.global_tokens = local_tokens.detach().clone().cpu() |
|
|
|
m = func_warper(m_ls) |
|
u = func_warper(u_ls[::-1]) |
|
else: |
|
m, u = (do_nothing, do_nothing) |
|
merged_tokens = x |
|
|
|
|
|
return m, u, merged_tokens |
|
|
|
|
|
def make_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]: |
|
""" |
|
Make a patched class on the fly so we don't have to import any specific modules. |
|
This patch applies ToMe to the forward function of the block. |
|
""" |
|
|
|
class ToMeBlock(block_class): |
|
|
|
_parent = block_class |
|
|
|
def _forward(self, x: torch.Tensor, context: torch.Tensor = None) -> torch.Tensor: |
|
m_a, m_c, m_m, u_a, u_c, u_m = compute_merge( |
|
self, x, self._tome_info) |
|
|
|
|
|
x = u_a(self.attn1(m_a(self.norm1(x)), |
|
context=context if self.disable_self_attn else None)) + x |
|
x = u_c(self.attn2(m_c(self.norm2(x)), context=context)) + x |
|
x = u_m(self.ff(m_m(self.norm3(x)))) + x |
|
|
|
return x |
|
|
|
return ToMeBlock |
|
|
|
|
|
def make_diffusers_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]: |
|
""" |
|
Make a patched class for a diffusers model. |
|
This patch applies ToMe to the forward function of the block. |
|
""" |
|
class ToMeBlock(block_class): |
|
|
|
_parent = block_class |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
timestep=None, |
|
cross_attention_kwargs=None, |
|
class_labels=None, |
|
) -> torch.Tensor: |
|
|
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
else: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
|
|
m_a, u_a, merged_tokens = compute_merge( |
|
self, norm_hidden_states, self._tome_info) |
|
|
|
norm_hidden_states = merged_tokens |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
|
|
|
|
attn_output = u_a(attn_output) |
|
hidden_states = attn_output + hidden_states |
|
|
|
if self.attn2 is not None: |
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2( |
|
hidden_states) |
|
) |
|
|
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = norm_hidden_states * \ |
|
(1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
return hidden_states |
|
|
|
return ToMeBlock |
|
|
|
|
|
def hook_tome_model(model: torch.nn.Module): |
|
""" Adds a forward pre hook to get the image size. This hook can be removed with remove_patch. """ |
|
def hook(module, args): |
|
module._tome_info["size"] = (args[0].shape[2], args[0].shape[3]) |
|
return None |
|
|
|
model._tome_info["hooks"].append(model.register_forward_pre_hook(hook)) |
|
|
|
|
|
def hook_tome_module(module: torch.nn.Module): |
|
""" Adds a forward pre hook to initialize random number generator. |
|
All modules share the same generator state to keep their randomness in VidToMe consistent in one pass. |
|
This hook can be removed with remove_patch. """ |
|
def hook(module, args): |
|
if not hasattr(module, "generator"): |
|
module.generator = init_generator(args[0].device) |
|
elif module.generator.device != args[0].device: |
|
module.generator = init_generator( |
|
args[0].device, fallback=module.generator) |
|
else: |
|
return None |
|
|
|
|
|
return None |
|
|
|
module._tome_info["hooks"].append(module.register_forward_pre_hook(hook)) |
|
|
|
|
|
def apply_patch( |
|
model: torch.nn.Module, |
|
local_merge_ratio: float = 0.9, |
|
merge_global: bool = False, |
|
global_merge_ratio=0.8, |
|
max_downsample: int = 2, |
|
seed: int = 123, |
|
batch_size: int = 2, |
|
include_control: bool = False, |
|
align_batch: bool = False, |
|
target_stride: int = 4, |
|
global_rand=0.5): |
|
""" |
|
Patches a stable diffusion model with VidToMe. |
|
Apply this to the highest level stable diffusion object (i.e., it should have a .model.diffusion_model). |
|
|
|
Important Args: |
|
- model: A top level Stable Diffusion module to patch in place. Should have a ".model.diffusion_model" |
|
- local_merge_ratio: The ratio of tokens to merge locally. I.e., 0.9 would merge 90% src tokens. |
|
If there are 4 frames in a chunk (3 src, 1 dst), the compression ratio will be 1.3 / 4.0. |
|
And the largest compression ratio is 0.25 (when local_merge_ratio = 1.0). |
|
Higher values result in more consistency, but with more visual quality loss. |
|
- merge_global: Whether or not to include global token merging. |
|
- global_merge_ratio: The ratio of tokens to merge locally. I.e., 0.8 would merge 80% src tokens. |
|
When find significant degradation in video quality. Try to lower the value. |
|
|
|
Args to tinker with if you want: |
|
- max_downsample [1, 2, 4, or 8]: Apply VidToMe to layers with at most this amount of downsampling. |
|
E.g., 1 only applies to layers with no downsampling (4/15) while |
|
8 applies to all layers (15/15). I recommend a value of 1 or 2. |
|
- seed: Manual random seed. |
|
- batch_size: Video batch size. Number of video chunks in one pass. When processing one video, it |
|
should be 2 (cond + uncond) or 3 (when using PnP, source + cond + uncond). |
|
- include_control: Whether or not to patch ControlNet model. |
|
- align_batch: Whether or not to align similarity matching maps of samples in the batch. It should |
|
be True when using PnP as control. |
|
- target_stride: Stride between target frames. I.e., when target_stride = 4, there is 1 target frame |
|
in any 4 consecutive frames. |
|
- global_rand: Probability in global token merging src/dst split. Global tokens are always src when |
|
global_rand = 1.0 and always dst when global_rand = 0.0 . |
|
""" |
|
|
|
|
|
remove_patch(model) |
|
|
|
is_diffusers = isinstance_str( |
|
model, "DiffusionPipeline") or isinstance_str(model, "ModelMixin") |
|
|
|
if not is_diffusers: |
|
if not hasattr(model, "model") or not hasattr(model.model, "diffusion_model"): |
|
|
|
raise RuntimeError( |
|
"Provided model was not a Stable Diffusion / Latent Diffusion model, as expected.") |
|
diffusion_model = model.model.diffusion_model |
|
else: |
|
|
|
diffusion_model = model.unet if hasattr(model, "unet") else model |
|
|
|
if isinstance_str(model, "StableDiffusionControlNetPipeline") and include_control: |
|
diffusion_models = [diffusion_model, model.controlnet] |
|
else: |
|
diffusion_models = [diffusion_model] |
|
|
|
for diffusion_model in diffusion_models: |
|
diffusion_model._tome_info = { |
|
"size": None, |
|
"hooks": [], |
|
"args": { |
|
"max_downsample": max_downsample, |
|
"generator": None, |
|
"seed": seed, |
|
"batch_size": batch_size, |
|
"align_batch": align_batch, |
|
"merge_global": merge_global, |
|
"global_merge_ratio": global_merge_ratio, |
|
"local_merge_ratio": local_merge_ratio, |
|
"global_rand": global_rand, |
|
"target_stride": target_stride |
|
} |
|
} |
|
hook_tome_model(diffusion_model) |
|
|
|
for name, module in diffusion_model.named_modules(): |
|
|
|
|
|
if isinstance_str(module, "BasicTransformerBlock"): |
|
make_tome_block_fn = make_diffusers_tome_block if is_diffusers else make_tome_block |
|
module.__class__ = make_tome_block_fn(module.__class__) |
|
module._tome_info = diffusion_model._tome_info |
|
hook_tome_module(module) |
|
|
|
|
|
if not hasattr(module, "disable_self_attn") and not is_diffusers: |
|
module.disable_self_attn = False |
|
|
|
|
|
if not hasattr(module, "use_ada_layer_norm_zero") and is_diffusers: |
|
module.use_ada_layer_norm = False |
|
module.use_ada_layer_norm_zero = False |
|
|
|
return model |
|
|
|
|
|
def remove_patch(model: torch.nn.Module): |
|
""" Removes a patch from a ToMe Diffusion module if it was already patched. """ |
|
|
|
|
|
model = model.unet if hasattr(model, "unet") else model |
|
model_ls = [model] |
|
if hasattr(model, "controlnet"): |
|
model_ls.append(model.controlnet) |
|
for model in model_ls: |
|
for _, module in model.named_modules(): |
|
if hasattr(module, "_tome_info"): |
|
for hook in module._tome_info["hooks"]: |
|
hook.remove() |
|
module._tome_info["hooks"].clear() |
|
|
|
if module.__class__.__name__ == "ToMeBlock": |
|
module.__class__ = module._parent |
|
|
|
return model |
|
|
|
|
|
def update_patch(model: torch.nn.Module, **kwargs): |
|
""" Update arguments in patched modules """ |
|
|
|
model0 = model.unet if hasattr(model, "unet") else model |
|
model_ls = [model0] |
|
if hasattr(model, "controlnet"): |
|
model_ls.append(model.controlnet) |
|
for model in model_ls: |
|
for _, module in model.named_modules(): |
|
if hasattr(module, "_tome_info"): |
|
for k, v in kwargs.items(): |
|
setattr(module, k, v) |
|
return model |
|
|
|
|
|
def collect_from_patch(model: torch.nn.Module, attr="tome"): |
|
""" Collect attributes in patched modules """ |
|
|
|
model0 = model.unet if hasattr(model, "unet") else model |
|
model_ls = [model0] |
|
if hasattr(model, "controlnet"): |
|
model_ls.append(model.controlnet) |
|
ret_dict = dict() |
|
for model in model_ls: |
|
for name, module in model.named_modules(): |
|
if hasattr(module, attr): |
|
res = getattr(module, attr) |
|
ret_dict[name] = res |
|
|
|
return ret_dict |